
Université de Mons
Faculté Polytechnique

Mathématique et Recherche Opérationnelle

Binary and Boolean
Matrix Factorizations

Christos Kolomvakis

A thesis presented in partial fulfillment of the requirements for the degree of
Docteur en Sciences de l’Ingénieur et Technologies

Dissertation committee:

Professor Nicolas Gillis University of Mons Supervisor
Professor Arnaud Vandaele University of Mons Co-supervisor
Professor Fabian Lecron University of Mons Chair
Professor François Glineur Université catholique de Louvain
Professor Lieven De Lathauwer KU Leuven
Professor Pauli Miettinen University of Eastern Finland

2

Abstract

The processing of data has become an important part of many applications during
the last years. Such applications include hyperspectral unmixing, recommender sys-
tems (for example in services like Spotify and Netflix), computer vision, text mining
and audio source separation, to name a few. Many models and algorithms have been
proposed, including linear dimensionality reduction (LDR), the perceptron, a pre-
cursor to modern neural networks, expectation-maximization, and the more recent
algorithms for neural networks.

Our focus in this thesis is on a subclass of ML models called matrix factorization
models. These are unsupervised algorithms whose goal is to decompose a given data
matrix into a product of two smaller matrices, referred to as factors. Both factors
are typically significantly smaller than the initial data matrix. There are multiple
applications for matrix factorizations. Compression is one of them, since the factors
are smaller than the original matrix. In text mining, matrix factorization retrieves
topics from a collection of documents. In recommender systems, it creates groupings
(clusters) of data points with common characteristics. As an example, when the
entries of the input matrix represent a measure of the interaction between a user
(rows of the matrix) and a product (columns of the matrix), these clusters represent
groups with similar tastes. In addition, depending on the application, constraints can
be imposed to the factors. An example of a constrained model is nonnegative matrix
factorization (NMF) where the elements of the factors need to be nonnegative.

In this thesis, we focus on three models: (1) semi-binary Matrix Factorization
(semi-bMF), where one factor has no constraints and the other can only have elements
that are either 0 or 1, (2) Boolean matrix factorization (BMF) where both factors
must only have elements that are either 0 or 1 and (3) Boolean matrix tri-factorization
(BMTF), where we are factorizing into three factors. Furthermore, the matrix product
used in the Boolean factorizations is the Boolean matrix product, which is different
than the standard matrix product operation. This makes the computation harder but
allows for better approximations and additional interpretability properties. For both
models, we present new algorithms that are competitive with the state of the art and
show that they can provide meaningful results in several applications, including topic
modeling, image analysis, and clustering.

3

4

Acknowledgements

At the end of my PhD studies I want to reflect on the people that have supported me
on this lengthy and intense journey.

I want to extend my thanks to my PhD advisor, Nicolas Gillis, who one day sud-
denly saw an email from a person with a weird name and surname, and was open
to communication and accepted me in his team. His guidance and his advice were
instrumental for the completion of the thesis. I also want to thank Arnaud Vandaele,
my co-advisor for his help, his advice and his general down-to-earth attitude.

I am grateful to have been part of a group full of cheerful and interesting people. I
want to thank them, by chronological order of when I met each one: Nicolas Nadisic,
Olivier, Maryam, Pierre, Atharva, Hien, Giovanni Seraghiti, Giovanni Barbarino,
Subhayan, Timothy, Florian, Stefano, Amjad and Alexandra.

I want to give special thanks to my parents, my brothers, and many others for their
support and the good times that we have been having together.

I would also like to thank Emerance Delacenserie and Laurence Theunis for their help
in navigating the post-PhD non-academic world.

I want to thank the jury members for agreeing to evaluate this thesis and for their
useful comments.

Finally, I want to give my utmost thanks and gratitude to Hajaar for all the beautiful
moments we have shared together these last years, for always supporting me and for
always being there.

5

6

7

I acknowledge the support by the F.R.S.-FNRS and the FWO (EOS, O005318F-
RG47), and the European Research Council (ERC, consolidator grant no 101085607).

8

Contents

Abstract 3

Contents 9

Notation 11

List of Figures 15

List of Tables 17

1 Introduction 19
1.1 Contributions and thesis outline . 21

2 Robust Binary Component Decompositions 23
2.1 Introduction . 23
2.2 Models and Algorithms from [70] . 24
2.3 Robust versions of the algorithms . 30

2.3.1 Robust SSCD . 30
2.3.2 Robust ASCD and robust ABCD 33

2.4 Gradient methods for the SDP problems 35
2.4.1 First-order method for SSCD 35
2.4.2 First order method for ASCD 36

2.5 Burer-Monteiro (B-M) approach . 38
2.5.1 B-M on the SSCD problem . 38
2.5.2 B-M on the ASCD problem . 39

2.6 Numerical Experiments . 40
2.6.1 Original experiments from [62] 41
2.6.2 Comparison of the B-M approach versus the PG approach . . . 44

2.7 Conclusion . 45

3 Novel Algorithms for Boolean Matrix Factorization 47
3.1 Boolean matrix factorization (BMF) 48

3.1.1 Illustrative example . 49
3.1.2 Previous works . 50

9

10

3.2 Alternating optimization (AO) for BMF 54
3.2.1 IP formulation for BMF subproblems 54
3.2.2 AO for BMF . 55
3.2.3 Initialization of AO . 55

3.3 Combining multiple BMF solutions . 57
3.3.1 MS-Comb-AO . 57
3.3.2 Tree-BMF . 58

3.4 Greedy BMF heuristics . 58
3.4.1 Greedy Boolean LS . 59
3.4.2 Greedy combining methods . 60
3.4.3 Custom data structure for Boolean vectors and matrices in C++ 62

3.5 Numerical Experiments . 64
3.5.1 Comparison of our bitmatrix data structure 64
3.5.2 Experiments from the datasets in [52] 65
3.5.3 Application to topic modeling 71
3.5.4 Application on facial images . 84

3.6 Conclusion . 88

4 Boolean Matrix Tri-Factorization 89
4.1 Introduction . 89
4.2 Boolean matrix tri-factorization . 90
4.3 Identifiability via Orthogonality . 91
4.4 Block-coordinate descent for BMTF 92

4.4.1 Introduction . 92
4.4.2 Imposing sparsity . 93
4.4.3 Generating sparser and more expressive solutions 93
4.4.4 Initialization of the algorithm 94

4.5 Numerical Experiments . 95
4.5.1 Experiments on synthetic data 95
4.5.2 Clustering a real dataset with BMTF 96

4.6 Conclusion . 97

5 Conclusions 99
5.1 Summary of the contributions . 99
5.2 Future Work . 100

Contents 11

Notation
R Set of real numbers
Rm Set of real column vectors with m elements
Rm×n Set of real matrices with dimensions m× n
A Matrix A
A(:, k) k–th column of matrix A
A(k, :) k–th row of matrix A
A(:, I) Subset of columns of matrix A specified by the indices in the set I
a Vector a
aT Transpose of vector a
ai Element i from vector a
ai,j Element i,j from matrix A
A ◦B Boolean matrix product of A and B
A⊗B Kronecker product of A and B
A⊙B Elementwise (or Hadamard) product of A and B
{ai}ri=1 Collection of vectors a1,a2, . . . ,ar
∆r Probability simplex, the set {τ | τi ≥ 0 for all i,

∑r

i=1
τi = 1}

In Identity matrix of dimensions n× n

sign(x)
Elementwise sign operator that sets an element to -1 if

it is negative, to +1 if it is nonnegative

Sn The set of symmetric matrices in Rn×n

X ⪰ 0 X is positive semi definite
X > 0 X has positive elements
diag(X) A column vector that contains the diagonal elements of X

En
The elliptope of dimension n,

that is {X ∈ Sn : diag(X) = e and X ⪰ 0}

orth(A) Orthogonal basis column space of A
tr(A) Trace of square matrix A, the sum of its diagonal elements

vec(A)
Vectorization of matrix A (stacking of the columns of A,

from left to right, into a vector)

∥A∥2 Spectral norm of the matrix A (its greatest singular value)
∥A∥F Frobenius norm of matrix A ∈ Rm×n:

√∑m

i=1

∑n

j=1
a2i,j

∥a∥2 l2 norm of vector a ∈ Rn:
√∑n

i=1
a2i

PS(X) Projection of X to the set S: PS(X) = argminY∈S ∥X−Y∥
σi(A) The i–th singular value of matrix A

12

min(1,A) Entrywise application of the minimum between 1 and ai,j
max(1,A) Entrywise application of the maximum between 1 and ai,j
y ≤ x For y,x ∈ Rn, it holds that yi ≤ xi for all i ∈ {1, . . . , n}

Y ≤ X
For Y,X ∈ Rm×n, it holds that yi,j ≤ xi,j ,

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}

Contents 13

Acronyms
ABCD Asymmetric binary component decomposition p. 29
ALS Alternating least squares p. 42
AO Alternating optimization p. 40
ASCD Asymmetric sign component decomposition p. 27
B-M Burer - Monteiro p. 24
BCD Block-coordinate descent p. 92
bMF Binary matrix factorization p. 22
BMF Boolean matrix factorization p. 21
BMTF Boolean matrix tri-factorization p. 22
BTF Boolean tensor factorization p. 53
BoolLS Boolean least squares p. 54
CMF Coupled matrix factorization p. 42
ELBMF Elastic boolean matrix factorization p. 71
IP Integer program p. 47
IPM Interior point method p. 42
MF Matrix factorization p. 19
MTF Matrix tri-factorization p. 20
MIP Mixed integer programming p. 63
MS-AO Multistart alternating optimization p. 57
MS-Comb-AO Multistart, combination and alternating optimization p. 58
NMF Nonnegative matrix factorization p. 20
NMTF Nonnegative matrix tri-factorization p. 89
PCA Principal component analysis p. 20
PG Projected gradient p. 36
SBCD Symmetric binary component decomposition p. 27
Semi-bMF Semi-binary matrix factorization p. 21
SDP Semi definite programming p. 23
SNR Signal to noise ratio p. 42
SSCD Symmetric sign component decomposition p. 24
SVD Singular value decomposition p. 20

14

List of Figures

2.1 Illustration of the approach of Kueng and Tropp [70] where the convex
hull of W(:, 1)W(:, 1)⊤ and W(:, 2)W(:, 2)⊤ is a polyhedral face of the
elliptope. This is an example with r = 2, and m = 3. Image adapted
from [70]. 25

2.2 Picture showing an iteration of the algorithm for SSCD. This example
is for r = 3. Image adapted from [70]. 26

2.3 Mean Hamming Distance over 20 trials. The legend includes the aver-
age running time at SNR 20dB. 43

3.1 Venn diagram showing the overlapping communities that animals are
assigned to. 50

3.2 Venn diagram showing the overlapping communities that animal char-
acteristics are assigned to. 50

3.3 Sample Tree BMF with depth = 2. The order of the function calls
for this tree is depth-first postorder. Initially, the leaf nodes solve
instances of MS-Comb-AO and then propagate their solutions to the
parent node, for it to combine. This procedure continues until we reach
the root node, when the final factors are returned. 59

3.4 Facial features extracted by AO-BMF on the CBCL data set for r = 20. 85
3.5 Facial features extracted by Greedy-Comb on the binarized CBCL data

set X̂. 86
3.6 Facial features extracted by Greedy-TreeBMF on the binarized CBCL

data set X̂. 87

15

16

List of Tables

3.1 Average execution time in seconds over 30 trials of Gurobi to solve
noisy BoolLS problems (3.4) for various values of m and r. 55

3.2 Run times to combine N rank-one factors for a 105-by-105 matrix with
r = 5 (namely, the apb data set, see Section 3.5). 58

3.3 Results of the Boolean matrix multiplications for the multiple sizes
considered and all the data structures considered. Average run times
for 10 such multiplications. 64

3.4 Results of the Boolean matrix multiplications for the multiple sizes
considered and all the data structures considered. Average run times
for 10 such multiplications. 65

3.5 Four binary real-world data sets. 65
3.6 Four binary real-world incomplete data sets. 65
3.7 Objective function ∥M ⊙ (X − min(1,WH))∥2F of the best solution

found by various algorithms in [52, Table 4, page 20]. 66
3.8 Best result obtained with the method in [33] (left), and result of this

best solution improved by AO (right). The numbers indicate the dif-
ference compared with the best values in Table 3.7. A negative value
means an improvement, a positive value means a worse solution. . . . 66

3.9 Best result obtained with the method in [21] (left), and result of this
best solution improved by AO (right). The numbers indicate the dif-
ference compared with the best values in Table 3.7. 67

3.10 Results for all our proposed methods for both timelimits considered.
This Table is for the datasets with no missing elements. In bold is the
best performing method for a given dataset and rank, with the second
best performing method being underlined. 68

3.11 Part of our results for all our proposed methods for both timelimits
considered. This Table is for the datasets with missing elements. In
bold is the best performing method for a given dataset and rank, with
the second best performing method being underlined. 69

3.12 The remaining part of our results for all our proposed methods for
both timelimits considered. This Table is for the datasets with missing
elements. In bold is the best performing method for a given dataset
and rank, with the second best performing method being underlined. . 69

17

18

3.13 The three subsets of X we will consider in this section and the param-
eters that we used to create them. 71

3.14 Best results on the relative errors for all the document subsets and all
the different algorithms considered. In parenthesis, we note the mean
time over all Monte Carlo trials (if multiple trials are performed for a
method). In bold is the best performing method for a given dataset
and rank, with the second best performing method being underlined. . 72

3.15 Best results on the relative errors for all the document subsets and all
the different algorithms considered. In parenthesis, we note the mean
time over all Monte Carlo trials (if multiple trials are performed for a
method). In bold is the best performing method for a given dataset
and rank, with the second best performing method being underlined. . 73

3.16 Best results on the number of 1s covered, for all the document sub-
sets and all the different algorithms considered. In bold is the best
performing method for a given dataset and rank, with the second best
performing method being underlined. 73

3.17 List of topics retrieved and number of times each topic appears among
all the 10 runs. 75

3.18 Table for topics 1 - 5 after using AO-BMF. 75
3.19 Table for topics 6 - 10 after using AO-BMF. 76
3.20 Table for topics 1 - 5 after using MS-Comb-AO. 76
3.21 Table for topics 6 - 10 after using MS-Comb-AO. 77
3.22 Table for topics 1 - 7 after using Greedy-Comb. 79
3.23 Table for topics 8 - 14 after using Greedy-Comb. 80
3.24 Table for topics 15 - 20 after using Greedy-Comb. 81
3.25 Table that compares the best relative error of most of the methods

tested for the binarized CBCL dataset. In parenthesis, we note the
mean time over all Monte Carlo trials. In bold is the best performing
method for a given dataset and rank, with the second best performing
method being underlined. 84

4.1 Percentage of time the ground-truth factors, or zero errors, are found
among the 50 Monte Carlo runs on synthetic data sets. In brackets, we
report the percentage of entries found wrong on average for the factors
W, S and H, and report the average relative error. 96

4.2 Clusters of animals. 97
4.3 Clusters of characteristics. 97

Chapter 1

Introduction

Artificial intelligence (AI) is a very influential discipline that originally started in the
1950s. It was Alan Turing, in his work in 1950 [112], that started the discipline and
first posed the question "Can machines think?". In this seminal work, he presents
the concept of the "Turing test". One of its definitions is: Given a text transcript
between a machine and a human, can someone reliably distinguish the machine from
that conversation? The machine passes the test if the human cannot distinguish the
human from the machine in the transcript.

Since then, there have been many works on AI, with distinct methodologies. One
approach that was once popular is Expert Systems that tried to emulate the decision
making process of humans. This was done by having a knowledge base, through which
it derived facts and rules, and an inference engine, which made it deduce new facts
[100]. Periods of intense research on AI were often followed by many periods referred
to as "AI winters", where, due to discouraging results, there were severe funding cuts
to AI projects.

Machine Learning (ML) [12] is a subfield of AI, where statistical algorithms are
used to learn parameters from data. ML is also often used erroneously as a synonym to
the whole discipline of AI. The current AI boom that started in the 2010s has made
immense changes in the directions of research and in the applications and services
created by using AI. Deep learning, a subfield of machine learning that uses neural
networks for ML tasks, grew in popularity during the 2010s. An important work is
in [69] where a neural network (NN) is shown to outperform the state of the art in
the task of visual recognition. Although works in NNs did not start with this paper
(consider for example the seminal papers [84, 96, 99] which were released many years
before), the hardware needed for the neural networks to perform all their necessary
operations became available around the 2010s, which allowed the growth of deep
learning. Since then, the AI boom has continued, with the recent development and
scaling of large language models (LLMs) being considered a very important milestone
[19, 61, 115].

This thesis focuses on a subclass of unsupervised models called Matrix Factoriza-
tion (MF) models where the data are stored in a matrix. Given a matrix X ∈ Rm×n,

19

20

where each column represents a data point, we want to factorize it as the product of
two matrices, W ∈ Rm×r and H ∈ Rr×n where r ≪ min(m,n), such that X ≈WH.
We call r the rank of the factorization. Matrix factorizations are unsupervised learn-
ing algorithms (although semi-supervised and supervised variants exist). In contrast,
supervised learning algorithms need labels attached to the data points for prediction
tasks. An example of a matrix factorizations include the truncated Singular Value
Decomposition (SVD). These are examples of unconstrained matrix factorizations and
they can be computed in polynomial time. Given the application at hand, one may
want to impose constraints on the factors. For example, in hyperspectral imaging,
we want the factors to have nonnegative elements, because of physical interpretations
of the factors, and we can use Nonnegative Matrix Factorization (NMF) [46]. In fa-
cial image reconstruction, sparse constraints on the factors (that is, restricting them
to have as few non-zero elements as possible) can also be introduced together with
nonnegativity. This gives rise to Sparse NMF [59].

Typically, noise is present, and the MF problem is cast as follows:

min
W∈Dm×r

W ,H∈Dr×n
H

d(X,WH), (1.1)

where DW is the domain of the elements of the matrix W, DH is the domain of the
elements of the matrix H, and d(X,WH) is a cost function measuring how close the
product of the factors are to the data matrix. The cost function is chosen according
to the application. Functions that can be chosen include the Frobenius norm or
the Kullback-Leibler distance [57]. In many cases, constrained matrix factorization
problems are NP-hard to solve [88, 116]. Hence we restrict ourselves to finding two
factors that approximate the data matrix X as well as possible, typically looking for
locally optimal solutions. Examples can be found in [1, 48, 60, 74, 125].

Constrained MF has successfully been applied in a wide variety of applications
such as document classification, community detection, hyperspectral unmixing, and
recommender systems, to cite a few; see, e.g., [46, 83, 113]. Other constrained MF
models that can be considered depending on the problem include variants of Principal
component analysis (PCA), such as sparse [126] and robust [25] PCA, semi-NMF
where only one factor is non-negative [48, 109] and orthogonal NMF, where one of
the non-negative factors is also constrained to have orthonormal columns [4, 120].

A closely related problem to matrix factorization is matrix completion (MC) [24,
95]. In MC, elements of the data matrix are missing. This is a realistic assumption,
and one such example is in a user-movie dataset as most users have not watched most
movies in the data base. The goal of MC is to estimate the missing elements of the
matrix, given the already observed elements, under the low-rank assumption of the
input matrix. As is the case with MF, in MC one can also add constraints to the
factors, depending on the application. Nonnegative matrix completion (NMC) is an
example of a constrained matrix completion task [37, 108, 122].

Finally, let us mention matrix tri-factorization (MTF), where the input matrix
is factorized into three factors instead of two [36, 124]. MTF will be the focus of
Chapter 4. An MTF is defined by two ranks r1 and r2, trying to decompose X as
follows

X = WSH. (1.2)

Chapter 1. Introduction 21

Here, W ∈ Dn×r1
W , S ∈ Dr1×r2

S and H ∈ Dr2×m
H , and DS is the domain of the elements

of the matrix S. Note that the number of columns of W (= r1) and rows of H (= r2)
can be different, as opposed to standard MF. The factors W and H are linked through
a middle factor S. For MTF to make sense, constraints need to be imposed on the
factors W and H; see Chapter 4 for more details. The computation of three factors
makes MTF more complex than MF to compute, but it has the advantage to be more
flexible in interpreting data. For example, in community detection, MF clusters the
column data points and the row data points of the input matrix into r clusters (that
is, r clusters for column data points and r clusters for row data points), corresponding
to the r rank-one factors, W(:, k)H(k, :) for k = 1, 2, . . . , r. On the other hand, MTF

• allows for a distinct number of clusters for the column and the row data points.
More specifically, the column data points are grouped into r1 clusters in W,
while the row data points are grouped into r2 clusters in H. For example, in a
movie-user data set, there could be a different number of communities of movies
and users.

• links these clusters together via the factor S: since X =
∑n

i=1

∑m

j=1
S(i, j)W(:

, i)H(j, :), the i-th cluster of the column data points interacts with the j-th
cluster of the row data points by the value S(i, j). In MTF, the two groups of
clusters can be linked in multiple ways, according to the elements of S. MF is
a special case of MTF where S is the identity matrix.

1.1 Contributions and thesis outline
This thesis focuses mainly on algorithms for matrix factorizations with binary factors.

In chapter 2, we focus on semi-binary matrix factorization (semi-bMF). Semi-
bMF factorizes a dataset into a factor with real elements and a factor with binary
elements. Our focus in this chapter is an extension of the works in [70, 71], where
the authors present four matrix factorizations, which, under normal circumstances,
are difficult to compute. For all four factorizations, the authors present algorithms
and conditions under which the proposed algorithms can compute the ground truth
in polynomial time. However, these can only be applied in the ideal case where the
input dataset satisfies all these conditions, which are very restrictive. The algorithms
fail in the slightest presence of noise. Furthermore, these methods cannot be scaled to
handle medium and large-sized datasets. In this chapter, we propose extensions that
allow the handling of noisy data and address scalability [62]. We will also present
an unpublished work that improves the scalability of [62] with the help of the Burer-
Monteiro approach [15, 29].

The second problem we focus on in this thesis is the design of algorithms for
Boolean Matrix Factorization (BMF), in Chapter 3. BMF is used to factorize matrices
with elements that are 0 or 1. This factorization uses a special version of the matrix
product called Boolean matrix product which uses logical operations from Boolean
algebra instead of the standard addition and multiplication (it uses the Boolean-
OR and Boolean-AND, respectively.). BMF can be used in a plethora of scenarios.

22

For example, in recent years, it has often been the case that websites no longer use
rating systems such as zero to five stars, or a rating system from 0 to 10. Spotify,
Youtube and Instagram are only but a few websites that now invite users to use
just "likes" to indicate preferences. Likes and dislikes can be modeled with 1s and
0s, respectively. Other than recommender systems, BMF can also be applied in
bioinformatics [54, 78], role mining [79, 114], and computer vision [73]. A matrix
factorization model that is closely related to BMF is binary Matrix Factorization
(bMF). bMF is also used for datasets with elements in {0, 1}, but uses the standard
addition and multiplication. However, bMF has drawbacks in comparison to BMF.
This allows for greater interpretability than bMF and smaller approximation errors.
Both bMF and BMF problems are NP-hard to solve [88]. We show in more detail
how BMF allows for greater expressivity than bMF. Then, we present our algorithms
based on approaches that use commercial solvers like Gurobi [53], as well as greedy
approaches. We will be comparing with the state of the art, and we will also be
showing how our algorithms perform in various applications. This chapter is based
on our previous work in [63] as well as a journal paper that is in preparation (add the
jourmal citation here).

Finally, in Chapter 4, we propose Boolean Matrix Tri-Factorization (BMTF).
BMTF factorizes a binary matrix into the Boolean matrix product of three factors.
We provide uniqueness conditions for BMTF, propose an algorithm and present an
application in clustering for an animal dataset [39]. Our motivation in using BMTF
instead of BMF for a clustering task is twofold: First, to be able to cluster the row
data points and the column data points of the input matrix into different numbers
of clusters. Second, the middle factor S provides the relations between the two types
of clusters (row data points and column data points) and gives more insight into the
data. The results in this chapter are based on our work in [64].

We conclude the thesis with Chapter 5, where we present our conclusions from
this thesis and give suggestions for possible future work.

For all the experiments that are presented in this thesis, we will be providing links,
where the interested reader may download the codes and replicate our experiments.

Chapter 2

Robust Binary Component
Decompositions

Semi-binary matrix factorization (semi-bMF) is a matrix decomposition model where
the elements of one factor are binary. Semi-BMF can be interpreted as a generalization
of k-means, and can be employed in clustering problems such as community detection.
In the absence of noise, Kueng and Tropp [70, 71] have recently proposed a provably
correct algorithm for semi-BMF that requires to solve semidefinite programs (SDPs).
In this chapter, we extend their approach in the presence of noise. Moreover, since
standard solvers for SDP rely on interior-point methods and do not scale well, we
also propose first-order methods to reduce the computational costs, to the expense of
finding a suboptimal solution (in our case, not finding all of the ground truth). We
test our new algorithms on synthetic data, and show that they compare favorably
with the state of the art. The content of this chapter is mainly from [62]:

• C. Kolomvakis and N. Gillis, "Robust Binary Component Decompositions,"
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP).

Due to the space limitations for this paper, some parts that were necessary in the
analysis of our methods were skipped. These will be explained in more detail in this
chapter. We will also discuss a new method that allows for greater scalability, which
improves on our results in [62] that we have not published over the course of this
PhD.

2.1 Introduction
In [70] and [71], the authors describe exact algorithms that can compute semi-BMF,
when the binary factor has elements in either {0, 1} or {±1}, as long as the input
matrix satisfies specific properties. These algorithms are shown not only to be poly-
nomial in the dimensions of the input matrix, but they can also recover the unique

23

24

ground truth factors. The drawback of their algorithms, however, is that they can
only be applied in the noiseless case, rendering them useless in practice. In addition,
these algorithms require solving SDPs, for which standard solvers rely on interior-
point methods (IPMs) [91], and hence are not scalable. Correlation matrices play an
important role in these factorizations. These matrices describe the correlation be-
tween multiple variables, they are symmetric and psd, have elements in (−1, 1) and
the diagonal is always full of 1s.
Our goal is twofold:

1. Extend the models and algorithms proposed in [70, 71] to handle noisy input
matrices.

2. Design algorithms that are less demanding in terms of memory needs and time.

The chapter is organized as follows. In Section 2.2, we recall the models and algo-
rithms from [70, 71]. In Section 2.3, we show how the model can be adapted in the
presence of noise and describe the new algorithms. In Section 2.4, we explain our first-
order methods that solve the SDPs of the new proposed algorithms. In section 2.5
we show a new approach to gain greater scalability gains. This is achieved through
the use of the Burer - Monteiro (B-M) method [20] that deals with the computational
bottlenecks of the method of section 2.4. Finally, in Section 2.6, we compare with sev-
eral state-of-the-art algorithms and we also compare all of our proposed approaches
to solve the SDPs. For the latter, we test the computational speed of each algorithm,
as well as their success rate in computing the ground truth. We also examine the
scalability gains achieved by using the B-M method to solve the SDPs.

2.2 Models and Algorithms from [70]
In [70], the following matrix decomposition is initially considered.

Definition 2.1 (Symmetric Sign Component Decomposition) The matrix A ∈
Sm is a correlation matrix and admits a rank-r symmetric sign component decompo-
sition (SSCD) if it can be decomposed as follows

A =
r∑

i=1

τisis
⊤
i , (2.1)

where τ ∈ ∆r
+ = {τ | τi > 0 for all i,

∑r

i=1
τi = 1}, and the sign components si ∈

{±1}m for all i.

Without any additional properties regarding either si or τi, computing the SSCD
is intractable. However, if the sign components satisfy the following property, the
computation of the SSCD can be performed in polynomial time [70].

Definition 2.2 (Schur independence for sign vectors) A collection of sign vec-
tors, {s1, . . . , sr} ⊂ {±1}m, is Schur independent if the set {e} ∪ {si ⊙ sj : 1 ≤ i <
j ≤ r} ⊂ Rm is linearly independent, where e is the vector of all ones, and ⊙ is the
Hadamard (elementwise) product.

Chapter 2. Robust Binary Component Decompositions 25

If a matrix S with elements in {±1} has columns that are Schur independent, we say
that S is Schur independent.

Under Schur independence, [70] proposed an algorithm to compute an SSCD of a
given correlation matrix A as in (2.1) using SDPs; see Alg. 1. The rationale behind
their algorithm is the geometric properties of the elliptope,

Em = {X ∈ Sm : diag(X) = e and X ⪰ 0},

where Sm is the set of real symmetric m × m matrices. The elliptope contains all
m × m correlation matrices. In fact, given an orthogonal basis column space of
A, U = orth(A), the set {X ∈ Em | tr(U⊤XU) = m} is a polyhedral face of
Em [72]. Hence maximizing a linear functional over this set will almost surely provide
an extreme point of that face, which will be a rank-one sign matrix sis

⊤
i , which are

the vertices of the elliptope Em [70]. This is shown in more detail in Figure 2.1.

Figure 2.1: Illustration of the approach of Kueng and Tropp [70] where the convex
hull of W(:, 1)W(:, 1)⊤ and W(:, 2)W(:, 2)⊤ is a polyhedral face of the elliptope.
This is an example with r = 2, and m = 3. Image adapted from [70].

Once a component is identified, it can be deflated from A, and the same trick
can be applied iteratively. We next show the algorithm for SSCD from [70] and we
also show the procedure of locating a vertex and then deflating the input matrix in
Figure 2.2.

26

Figure 2.2: Picture showing an iteration of the algorithm for SSCD. This example is
for r = 3. Image adapted from [70].

Algorithm 1 Noiseless SSCD [70]

Require: A =
∑r

i=1
τisis

⊤
i ∈ Em, where τ ∈ ∆r and si ∈ {±1}m.

Ensure: Recover τ and {si}ri=1, up to permutation.
1: for k = 1, . . . , r − 1 do
2: Let U = orth(A) ∈ Rm×r, then generate g ∈ Rm randomly and solve

max
X∈Em

g⊤Xg such that tr(U⊤XU) = m, (2.2)

to obtain X⋆ = sks
⊤
k for sk ∈ {±1}n

3: Calculate ζ∗, an optimal solution of

max
ζ∈R

ζ such that ζA+ (1− ζ)X∗ ⪰ 0.

4: Update A← ζ∗A+ (1− ζ∗)X∗ ⪰ 0 and k ← k + 1.
5: end for
6: Compute τ = argminy∈∆r ||A−

∑r

i=1
yisis

⊤
i ∥2.

We need to mention some additional steps that we are doing to Algorithm 1 to get
the desired results and which were not described in [70] due to space limitations. In
line 2 of the algorithm, when we solve problem (2.2) and factorize X⋆. to obtain the
rank-one component sks

⊤
k , we do not immediately get a sign vector from X⋆. From

our observations, we have noticed that initially, the values of the candidate vector are
in {± 1

√
m
} and not in {±1}. As a result, in order to get the sign component sk, we

need to apply the sign(·) operator elementwise. We now summarize all the steps to
extract the rank-1 sign component in line 2 of Algorithm 1:

1. After solving the SDP in (2.2) and obtain X⋆, we factorize it and we obtain a
vector that contains elements in {± 1

√
m
},

Chapter 2. Robust Binary Component Decompositions 27

2. Since this vector is not a sign vector yet, we apply elementwise the sign(·)
operator to finally obtain sk.

The following is the second MF presented in [70].

Definition 2.3 (Symmetric Binary Component Decomposition) The matrix
H ∈ Rm×m is a positive semi definite (psd) matrix and admits a rank-r symmet-
ric binary component decomposition (SBCD) if it can be decomposed as follows

H =
r∑

i=1

τiziz
⊤
i , (2.3)

where τ ∈ ∆r
+ = {τ | τi > 0 for all i,

∑r

i=1
τi = 1}, and the binary components

zi ∈ {0, 1}m for all i.

If the binary components are Schur independent, then (2.3) is uniquely defined, up
to trivial symmetries. The definition of Schur independence is different for binary
vectors:

Definition 2.4 (Schur independence for binary vectors) A set of binary vec-
tors, {z1, . . . , zr} ⊆ {0, 1}m, is Schur independent if the set {e} ∪ {zi : 1 ≤ i ≤
r} ∪ {zi ⊙ zj : 1 ≤ i < j ≤ r} ⊂ {0, 1}m is linearly independent.

Just like in the sign vector definition of Schur independence, if a binary matrix Z has
Schur independent columns, then we say that Z that is Schur independent. SBCD is
not used in the computation of the next factorizations that we will present, and as
such, we do not focus on it in this thesis.

Remark 2.1 SBCD is discussed only in [70] and not in [71], where it is referred to
as "binary component decomposition". We added the "symmetric" to the name of the
decomposition to distinguish it from a model that we will present later. SSCD is also
only referred to as "sign component decomposition" in [70], with the "symmetric" part
of the name being added in [71].

We now continue our discussion with the other factorization models from the paper
[71]. These are two factorizations that use SSCD as a step to compute them. We
present the first one, Asymmetric Sign Component Decomposition (ASCD):

Definition 2.5 (Asymmetric Sign Component Decomposition [71]) The ma-
trix B ∈ Rm×n admits an asymmetric sign component decomposition (ASCD) B =
SW⊤ (where S ∈ {±1}m×r and W ∈ Rn×r) if

• The sign matrix S ∈ {±1}m×r is Schur independent.

• The matrix W ∈ Rn×r has full column rank.

Under these assumptions, the authors prove that the decomposition is unique and
can be computed in polynomial time. Their algorithm for noiseless ASCD is shown
in Algorithm 2. We do not need to add any additional steps that are not presented

28

Algorithm 2 Noiseless ASCD [71]

Require: Dimensions m and n, rank-r matrix B ∈ Rm×n that satisfies the conditions
of Definition 2.5, rank r.

Ensure: Sign matrix S ∈ {±1}m×r and weight matrix W ∈ Rn×r with B = SW⊤

1: U← orth(B)
2: Find the solution (X⋆,Y⋆) to the semidefinite program

min
X∈Sm,Y∈Sn

trace(Y)

s.t. trace(U⊤XU) = m and diag(X) = e[
X B
B⊤ Y

]
⪰ 0

(2.4)

3: Apply algorithm 1 to X⋆ to obtain an SSCD

X⋆ = S diag(τ) S⊤

4: Find W by solving the linear system B = SW⊤

in Algorithm 2, like in the case of SSCD.

Before discussing the next factorization, let’s discuss problem (2.4). The authors
intially present the following lemma:

Lemma 2.1 Let B ∈ Rm×n. The semidefinite relation[
X B
BT Y

]
⪰ 0 (2.5)

enforces a factorization of B in the following sense:

1. If B = UV⊤, then (2.5) holds when X = UU⊤ and Y = VV⊤.

2. If (2.5) holds, then we can decompose B = UV⊤ into factors U ∈ Rm×r and
V ∈ Rn×r that satisfy X = UU⊤ and Y = VV⊤.

This lemma, as well as the rest of the constraints of (2.4), force X⋆ to be a correlation
matrix whose range equals the range of B. The authors further prove the following
proposition.

Proposition 2.1 Let B ∈ Rm×n that admits an ASCD. Let (X⋆,Y⋆) be the unique
minimizer of (2.4). Then X⋆ = SDiag(τ)S⊤, where S ∈ {±1}m×r is the sign com-
ponent of B and τ ∈ ∆+

r .

We can then find the sign component of B by applying our SSCD algorithm on X⋆.
We now discuss the final factorization that is presented in [71].

Chapter 2. Robust Binary Component Decompositions 29

Definition 2.6 (Asymmetric Binary Component Decomposition) The matrix
C ∈ Rm×n admits an asymmetric binary component decomposition (ABCD) C =
ZW⊤, where Z ∈ {0, 1}m×r and W ∈ Rn×r, if

• Z ∈ {0, 1}n×r is Schur independent.

• W ∈ Rm×r has full column rank.

Remark 2.2 ABCD described in [71] is the same as semi-bMF. For the remainder
of the paper, when referring to ABCD, we are referring to the model and algorithm
described in [71].

The authors show that if the conditions in Definition 2.6 are satisfied, then the
ABCD is unique and can be computed in polynomial time.

In [71], it is explained that the two Schur independence definitions can be linked
as follows. First, let us define the following one-to-one affine map:

F : {0, 1}m → {±1}m where F : z→ 2z− e and F−1 : s→ 1

2
(s+ e), (2.6)

where e is the all ones vector. Based on equation (2.6) we can give this additional
definition on Schur independence for binary matrices.

Lemma 2.2 A binary matrix Z is Schur independent if and only if the sign matrix[
F(Z) e

]
∈ {±1}m×r+1 is Schur independent.

This gives us an easier way to find if a binary matrix is Schur independent. Further-
more, the authors show in [71] that given a matrix C that admits an ABCD of rank
r, the matrix B = 2C−E admits an ASCD of rank r+1. By finding this ASCD, and
performing some additional operations, the ABCD of C can be retrieved. Algorithm 3
shows the original algorithm from [71] for ABCD.

30

Algorithm 3 Noiseless ABCD [71]

Require: Dimensions m and n, rank-r matrix C ∈ Rm×n that satisfies the conditions
of Definition 2.6, rank r.

Ensure: Binary matrix Z ∈ {0, 1}m×r and weight matrix W ∈ Rn×r with C = ZW⊤

1: Form the matrix B = 2C−E // E is the all ones matrix.
2: Apply Algorithm 2 to obtain an asymmetric sign component decomposition

B = SW⊤ =
[
s1 . . . sr+1

] [
w1 . . . wr+1

]⊤
3: Find the index i and sign ϕ ∈ {±1} where si = ϕe. Permute the sequences to

interchange
si ↔ sr+1 and wi ↔ wr+1

4: Find the solution ξ ∈ Rr to the linear system[
w1 . . . wr

]
ξ = ϕwr+1 + e

5: Set zi =
1

2
(ξisi + e) for each index i = 1, . . . , r

6: Define the binary matrix Z =
[
z1 . . . zr

]
and the weight matrix W =[

ξ1w1 . . . ξrwr

]
It is worth noting, that while the algorithms that were proposed are polynomial, the
memory demands are still quite high and do not allow the solution of problems with
high n and m (for our machine with a 16 GB RAM, the limit is around a value of 100
for both n and m.). For this reason, we want to also develop scalable algorithms that
may not solve the SDPs as well as an SDP solver but will allow us to tackle larger
problems.

In the next section, we will show our new algorithms for robust ABCD. We have
to modify all three algorithms that we previously presented in this section, so that
they can handle noisy inputs. As we mentioned, even in the slightest presence of noise
in the input matrices, all of these algorithms fail, because the SDP for SSCD has an
empty feasible set.

2.3 Robust versions of the algorithms
In order to solve ABCD in the presence of noise relying on the approach of Kueng
and Tropp, we need to adapt SSCD in the presence of noise.

2.3.1 Robust SSCD
Let us consider Ã = A+N, where A ∈ Sm admits an SSCD with Schur independent
sign components, and N ∈ Rm×m is additive noise. Let us see how we can adapt the
different steps of Alg. 1:

Chapter 2. Robust Binary Component Decompositions 31

Step 3. The basis for the column space of A, U ∈ Rm×r, is unknown but can be
replaced by the first r left singular vectors of Ã, denoted Ũ ∈ Rm×r. If the noise is
sufficiently small, the column spaces of U and Ũ will be close to one another [107].
It can be proven that tr(U⊤XU) ≤ m holds for all X ∈ Em, and hence the constraint
tr(U⊤XU) = m can be replaced with tr(U⊤XU) ≥ m. Second, the SDP (2.2) is in-
feasible in general when U is replaced by Ũ, because the hyperplane {X | tr(Ũ⊤XŨ) =
m} intersects Em only when the basis Ũ coincide with the column space of a matrix
within Em. This will happen with probability zero when r < m and N is randomly
generated. We therefore compute an optimal solution, X∗, of

max
X∈Em

g⊤Xg such that tr(Ũ⊤XŨ) ≥ m(1− ϵ), (2.7)

where ϵ is a hyperparameter. We can prove by duality that the trace constraint is
active, and hence replace it with equality for simplicity.
Activity of the trace constraint. Assume that there exists ϵ > 0 such that

tr(Ũ⊤X0Ũ) < m(1− ϵ) < max
X∈Em

tr(Ũ⊤XŨ),

where X0 is an optimal solution of the unconstrained problem maxX∈Em
g⊤Xg. The

second inequality ensures strict feasibility, which means Slater’s condition holds, hence
strong duality holds. Introducing a multiplier µ ≥ 0 for tr(Ũ⊤XŨ) ≥ m(1 − ϵ), the
KKT conditions give

µ⋆
(
tr(Ũ⊤X⋆Ũ)−m(1− ϵ)

)
= 0.

If the trace constraint is inactive, then µ⋆ = 0 and X⋆ would also solve the un-
constrained problem, hence X⋆ = X0. This contradicts tr(Ũ⊤X0Ũ) < m(1 − ϵ).
Therefore µ⋆ > 0 and the trace constraint is active.

Steps 4-5. Steps 4-5 of Alg. 1 perform a deflation. This is useful when A belongs
to a simplicial face of the elliptope Em. This is however not the case for Ã, and this
deflation step cannot produce a meaningful result: in fact, because of the noise and
low-rankness of A, Ã is typically not positive semidefinite and does not belong to the
elliptope. This is interesting to notice, and we actually preprocess the input matrix,
Ã, by projecting it onto the elliptope. We observe that this preprocessing improves
the performance of our algorithm. Moreover, in the noisy case, (2.7) will not produce
a rank-one sign matrix. Hence after computing X∗, we let u1 be the first left singular
vector of X∗, and set s1 = sign(u1).

Once s1 is identified, how can we extract more components? Of course, we could
generate another g randomly, hoping to obtain another rank-one sign matrix. How-
ever, there is no guarantee that this will work, and could require many attempts to
find all sign components. To alleviate this, we use an orthogonalization procedure for
the random g that we generate: the next g is orthogonal to the computed sk’s so that
sks

⊤
k cannot maximize the (nonnegative) objective, g⊤Xg ≥ 0, since g⊤sks

⊤
k g = 0.

Note that this idea could also be used in Alg. 1 to replace its deflation step which is
computationally (slightly) more demanding than simply generating g’s orthogonal to
the previously extracted sk’s. Still, in practice, because of the noise, the computed

32

rank-one factor sks
⊤
k at step k might not be satisfactory. This can be verified by

checking that tr(Ũ⊤sks
⊤
k Ũ) is large enough, otherwise we start again by generating

another g. Alg. 4 summarizes our noisy variant of Alg. 1.

Algorithm 4 Noisy SSCD

Require: A matrix Ã =
∑r

i=1
τisis

⊤
i +N, where τ ∈ ∆r and si ∈ {±1}m, ϵ > 0.

Ensure: Recover τ and {si}ri=1, up to permutation, given that ∥N∥2 is sufficiently
small.

1: P = Im; Project Ã to Em.
2: for k = 1 : r do
3: Let Ũ contain the first r left singular vectors of Ã.
4: repeat
5: Generate g ∈ Rm randomly, set g← Pg, and solve

max
X∈Em

g⊤Xg such that tr(Ũ⊤XŨ) = m(1− ϵ),

to obtain X∗.
6: Compute u1, the first left singular vector of X∗, and set sk = sign(u1).
7: until a suitable sign vector sk is computed

8: P = (Im −
(Ps̃k)(Ps̃k)

⊤

(∥Ps̃k)∥22
)P

9: end for
10: Compute τ = argminy∈∆r ||Ã−

∑r

i=1
yisis

⊤
i ∥2.

After retrieving an X from step 5 of Algorithm 2, we perform step 6 to retrieve
sk. The fact that X satisfies the trace equality constraint of the feasible set does not
imply that the retrieved sks

T
k will also satisfy it. We call sk a suitable vector if sks⊤k

satisfies the trace equality constraint tr(Ũ⊤XŨ) = m(1−ϵ) . In addition, the Ã used
in line 10 is the one retrieved after the projection onto the elliptope.
Why does Alg. 4 work? Let us provide a recovery guarantee for Alg. 4.

Theorem 2.1 Let A =
∑r

i=1
τisis

⊤
i ∈ Sm, N ∈ Rm×m be the noise such that

∥N∥2 ≤ δ, and Ã = A + N. For δ sufficiently small, there exists some ϵ ≥ 0 such
that Alg. 4 recovers {si}ri=1 exactly, with probability one.

Proof 2.1 (Sketch of the proof) First, let us denote Ũ(δ) the column space of the
first r singular vectors of Ã. This subspace changes smoothly with δ, and coincide
with that of U for δ = 0 [107]. In the noiseless SDP (2.2), we can prove that if the si’s
generating A are Schur independent, then tr(U⊤ss⊤U) ≤ m− 1 for any s ∈ {±1}m
with s ̸= si for all i. The function f(X) = tr(Ũ(δ)⊤XŨ(δ)) changes continuously
with δ, while we know f(X) ≤ m for any X ∈ Em. Therefore, for a well chosen ϵ,
given that δ is sufficiently small, the only rank-one sign matrices feasible for (2.7)
will be the rank-one components of A.

Recall that, with probability one, the optimal solution of (2.7) is unique (it iden-
tifies a vertex of the face of Em that contains A in its interior). The optimal solution

Chapter 2. Robust Binary Component Decompositions 33

of (2.7) changes smoothly with δ and ϵ [14], and coincides with (2.2) when δ = ϵ = 0.
Hence for δ sufficiently small, there exists ϵ such that an optimal solution of (2.7), X∗,
will be close to that of (2.7) (a rank-one sign matrix of A). After the post-processing
of X∗ (step 6 of Alg. 4), we recover a ground truth factor si.

Of course, in practice, the noise level, δ, might not be small enough. However, as we
will see, Alg. 4 is able to recover accurately the sign vectors that generated A even
for relatively large noise levels.

What is a suitable sign vector sk? In noisy experiments we have noticed that
even though a retrieved rank-one matrix X∗ satisfies the trace constraint tr(Ũ⊤XŨ) =
m(1− ϵ), the post-processed sign vector we retrieve from it may not. A suitable sign
vector still satisfies it after post-processing. For higher noise levels, there is a higher
probability of obtaining a X⋆ that does not give us a sign vector that is part of the
ground truth. In that case, there is a probability of failure by the algorithm to retrieve
the groundtruth.

2.3.2 Robust ASCD and robust ABCD
The robust versions of ASCD and ABCD do not need considerable changes (like it
was the case with SSCD), in comparison to the original versions of the algorithms.
We will mention the changes that we make to Algorithms 2 and 3 to adapt them for
the noisy scenario.

For ASCD:

• In problem (2.4), the constraint trace(U⊤XU) = m is replaced by the constraint
trace(U⊤XU) = m(1−ϵ) where ϵ is a hyperparameter and not necessarily equal
to the ϵ of robust SSCD.

• In line 3, we obtain X⋆ through Algorithm 4 instead of Algorithm 1.

For ABCD:

• In line 2, we use robust ASCD instead of Algorithm 2.

• In line 5, when we apply elementwise the operation zi =
1

2
(ξisi + e), we do not

immediately get a vector with elements in {0, 1}, but we get elements that are
close to 0 and 1. As such, we have to apply an elementwise rounding operator
to get Z.

We now show the algorithms for robust ASCD and robust ABCD.

34

Algorithm 5 Robust ASCD

Require: Dimensions m and n, rank-r matrix B ∈ Rm×n that satisfies the conditions
of Definition 2.5, rank r, tolerance hyperparameter ϵ.

Ensure: Sign matrix S ∈ {±1}m×r and weight matrix W ∈ Rn×r with B = SW⊤

1: U← orth(B)
2: Find the solution (X⋆,Y⋆) to the semidefinite program

min
X∈Sm,Y∈Sn

trace(Y)

s.t. trace(U⊤XU) = m(1− ϵ) and diag(X) = e[
X B
B⊤ Y

]
⪰ 0

(2.8)

3: Apply Algorithm 4 to X⋆ to obtain an SSCD

X⋆ = S diag(τ) S⊤

4: Find W by solving the linear system B = SW⊤

Algorithm 6 Robust ABCD

Require: Dimensions m and n, rank-r matrix C ∈ Rm×n that satisfies the conditions
of Definition 2.6, rank r.

Ensure: Binary matrix Z ∈ {0, 1}m×r and weight matrix W ∈ Rn×r with C = ZW⊤

1: Form the matrix B = 2C−E // E is the all ones matrix.
2: Apply Algorithm 5 to obtain an asymmetric sign component decomposition

B = SW⊤ =
[
s1 . . . sr+1

] [
w1 . . . wr+1

]⊤
3: Find the index i and sign ϕ ∈ {±1} where si = ϕe. Permute the columns so that

ϕe is the last column

si ↔ sr+1 and wi ↔ wr+1

4: Find the solution ξ ∈ Rr to the linear system[
w1 . . . wr

]
ξ = ϕwr+1 + e

5: Set zi =
1

2
(ξisi + e) for each index i = 1, . . . , r and round each element to the

closest integer.
6: Define the binary matrix Z =

[
z1 . . . zr

]
and the weight matrix W =[

ξ1w1 . . . ξrwr

]

Chapter 2. Robust Binary Component Decompositions 35

2.4 Gradient methods for the SDP problems

2.4.1 First-order method for SSCD
One way to solve (2.7) with high accuracy is through an interior point method [91].
For an m×m input correlation matrix, this requires O(m6) operations per iteration,
which makes it impractical for large data sets. To reduce the computational cost, we
propose a first-order method to solve (2.7); see Alg. 8. Note, and this is crucial, that
we do not need a high accuracy solution of (2.7), since we are going to postprocess
the solution to obtain a rank-one sign matrix.

For the projection step onto the feasible set, Em∩Tϵ, where Tϵ = {X | tr(Ũ⊤XŨ) =
m(1− ϵ)}, we use an alternating projection strategy. We choose to first project onto
the set of correlation matrices, and then onto the set Tϵ. The projection onto Tϵ is

simple, and given by PTϵ
(Y) = Y − tr(UU⊤Y)−m(1− ϵ)

r
UU⊤. A method for the

projection onto the elliptope, inspired by Dykstra’s algorithm for projecting into an
intersection of convex sets [17], is described in [58]. This algorithm is not to be
confused with Dijkstra’s algorithm for finding the shortest paths between nodes in
a weighted graph. The author in [58] states that as k → ∞, then both Xk and Yk

Algorithm 7 Projection to the nearest correlation matrix [58]

Require: A symmetric matrix D ∈ Rn×n, max_iter, maximum number of iterations
of the for loop.

Ensure: A correlation matrix D⋆ ∈ Rn×n.

1: Set Y0 = D, ∆S0 = 0n×n

2: for k = 1, 2, . . .max_iter do
3: Rk = Yk−1 −∆Sk−1

4: Xk = P(·⪰0)(Rk)
5: ∆Sk = Xk −Rk

6: Yk = P(Diag(·)=e)(Xk).
7: end for
8: Set D⋆ as either Xk or Yk.

converge to the desired correlation matrix. In our implementation, we choose our
output to be Yk. We perform 10 iterations of this alternating strategy (onto the set
Em ∩ Tϵ), while the number of iterations for the algorithm of [58] is set to 15.

The projections on lines 4 and 6 of Algorithm 7 are not straightforward, and we
will now give their formulas. The projection of a symmetric matrix to the set of
matrices where the diagonal is full of ones P(Diag(·)=e)(A) is given by [58]

P(Diag(·)=e)(A) = A−Diag(θi), (2.9)

where θ =
[
θ1, . . . , θn

]⊤ is the solution of

θ = Diag(A− I). (2.10)

36

The projection onto the set of positive semi-definite matrices P(·⪰0)(A) is more com-
plex. Let us consider the spectral decomposition A = QDQ⊤, where D = Diag(λi)
and Q is orthogonal and let

A+ = QDiag(max(λi, 0))Q
⊤. (2.11)

P(·⪰0)(A) is then given by

P(·⪰0)(A) = I−1/2
m (I1/2m A+I

1/2
m)I1/2m , (2.12)

where Im is the identity matrix of size m×m.
We resume the discussion on the projected gradient (PG) method used for SSCD.

The cost function f(X) = g⊤Xg is a linear function of X and its gradient is ∇f(X) =
gg⊤. In our implementation, we use a naive step-size, namely 1/∥g∥22, which appears
to perform well in practice. Surprisingly, we observe that performing only 5 iterations
of the projected gradient is enough to obtain competitive results on synthetic data
sets.

Algorithm 8 Projected gradient method for the SSCD to solve (2.7)

Require: Initial matrix X ∈ Rm×m, matrix U ∈ Rm×r, a vector g ∈ Rm, a scalar
ϵ > 0.

Ensure: Solves (2.7), approximately.

1: k = 1, Xk = X, L = σ1(gg
⊤) = ∥g∥22

2: while maximum gradient iterations have not been reached do
3: Xk+1 = Xk −

1

L
(−gg⊤)

4: while maximum projecting iterations have not been reached do
5: Project Xk+1 to Em according to [58].

6: Set Xk+1 = Xk+1 −
tr(UU⊤Xk+1)−m(1− ϵ)

r
UU⊤

7: end while
8: k = k + 1.
9: end while

2.4.2 First order method for ASCD
We want to use a projected gradient method to solve (2.8) as well, so we are able to
tackle large-scale problems. In order to make the projection step easier, we note that
the constraint [

X B
B⊤ Y

]
⪰ 0

Chapter 2. Robust Binary Component Decompositions 37

also enforces X ⪰ 0. As a result, we restate problem 2.8 as

min
X∈Sm,Y∈Sn

trace(Y)

s.t. trace(U⊤XU) = m(1− ϵ)

diag(X) = e

X ⪰ 0[
X B
B⊤ Y

]
⪰ 0.

(2.13)

Now we can use the projection step from Section 2.4.1, followed by a projection of[
X B
B⊤ Y

]
onto the set of positive semidefinite matrices. We finally apply SSCD on

the retrieved X from the block matrix to get the sign components.
The gradient of tr(Y) is the identity matrix and as was the case in the previous
section, it is a linear function that is 0-Lipschitz. A naive decision for the step–size
would be to set it to a fixed size. The projected gradient algorithm for Robust ASCD
is shown in Algorithm 9.

Algorithm 9 Projected gradient method for the ASCD to solve (2.8)

Require: Initial matrix B ∈ Rm×n, matrix U ∈ Rm×r, a scalar ϵ > 0, fixed gradient
step size η > 0.

Ensure: Solves (2.8), approximately.

1: k = 1
2: Initialize Xk and Yk as random symmetric matrices.
3: while maximum gradient iterations have not been reached do
4: Yk+1 = Yk − η(In)
5: while maximum projecting iterations have not been reached do
6: Project Xk+1 to Em according to [58].

7: Set Xk+1 = Xk+1 −
tr(UU⊤Xk+1)−m(1− ϵ)

r
UU⊤

8: end while
9: Project the matrix

[
Xk+1 B
B⊤ Yk+1

]
onto the set of psd matrices.

10: Extract the matrices Xk+1 and Yk+1.
11: k = k + 1.
12: end while

If we wish to solve problems where n and m are big, then we have to resort to
solving (2.13) with a projected gradient method, as the memory requirements for an
interior point method (through cvx for example) make this problem very difficult to
solve. For a laptop with 16GB RAM memory, the memory requirements for a problem
where n = 220 and m = 250 where too high, rendering it unable to solve the problem.

38

2.5 Burer-Monteiro (B-M) approach

2.5.1 B-M on the SSCD problem
So far, we have tried a first order method to solve (2.7). This would give us an initial
approach to handle larger instances of this problem [62]. However, the projection
to the set of positive semidefinite (PSD) matrices requires the computation of the
eigenvalue decomposition of X, which has a cost of O(m3). As part of a projected
gradient algorithm, projection onto the feasible set of (2.7) will be performed multiple
times. This renders it a computational bottleneck; in order to have an algorithm that
can handle larger instances, we need to find a way to address this issue.

Let p ∈ {1, . . . ,m} and Y ∈ Rm×p. If we consider X = YY⊤, then problem (2.7)
becomes [20] [15]

max
Y ∈ Rm×p

g⊤YY⊤g

s.t. tr(ŨYY⊤Ũ) = m(1− ϵ),

Diag(YY⊤) = e.

(2.14)

The matrix YY⊤ is always PSD, so we can drop the corresponding constraint. The
other two constraints after some algebraic operations are equivalently written as

• tr(ŨYY⊤Ũ) = m(1− ϵ)⇔ ∥Ũ⊤Y∥2F = m(1− ϵ)

• Diag(YY⊤) = e ⇔ ∥yi∥22 = 1, where yi is the i–th row of Y, with i ∈
{1, . . . ,m}.

As such, the problem is recast as

min
Y ∈ Rm×p

f(Y) = −g⊤YY⊤g

s.t. ˜∥U
⊤
Y∥2F = m(1− ϵ),

∥yi∥22 = 1, for all i ∈ {1, . . . ,m}

(2.15)

Projection onto the latter constraint set involves just dividing each row of Y by
its norm. To the best of our knowledge, the projection onto ∥Ũ⊤Y∥2F = m(1 − ϵ)
does not have a closed form solution. We thus propose solving the following problem
instead via a penalty method.

min
Y ∈ Rm×p

f(Y) = −g⊤YY⊤g + λ
(
∥Ũ⊤Y∥2F −m(1− ϵ)

)2
s.t. ∥yi∥22 = 1, for all i ∈ {1, . . . ,m}.

(2.16)

This would alleviate the bottleneck of the eigenvalue decomposition. For this new
cost function, the gradient is given by

∇f(Y) = −2gg⊤Y + 4λ(∥Ũ⊤Y∥2F −m(1− ϵ)))ŨŨ
⊤
Y. (2.17)

Chapter 2. Robust Binary Component Decompositions 39

The most expensive operation is now the multiplication g⊤YY⊤g with a cost of
O(m2p), down from O(m3) (due to the eigenvalue decompositions in Algorithm 7).

We now present the SSCD PG algorithm that uses the Burer-Monteiro scheme
in more detail in Algorithm 10. We note that Algorithm 10 introduces additional
parameters compared to the PG algorithm for SSCD that need to be tuned. However,
as we will see in section 2.6.2, this new algorithm is much faster and can also tackle
larger datasets.

Algorithm 10 Projected gradient method for SSCD with the Burer-Monteiro scheme
and extraction of a sign component.

Require: Parameter p to form Y ∈ Rm×p, matrix U ∈ Rm×r, a vector g ∈ Rm, a
scalar ϵ > 0, outer_lim upper limit of penalty method iterations (outer iterations),
parameter λ > 0 for the penalty method, parameter c > 1 that will be used to
increase λ after every outer iteration.

Ensure: Solves (2.16), approximately and returns a sign component sk.

1: for l = 1, . . . , outer_lim do
2: Form Y ∈ Rm×p with each element being drawn from U [0, 1].
3: k = 1, Yk = Y
4: while maximum gradient iterations have not been reached do
5: Compute the gradient via (2.17).
6: Compute step η via Armijo backtracking line search.
7: Yk+1 = Yk − η∇f(Y)
8: Divide each row of Y by its norm to fulfill the constraint in (2.14).
9: k = k + 1.

10: end while
11: λ = cλ
12: X = YY⊤

13: Compute u1, the first left singular vector of X, and set s = sign(u1).
14: If s is a desired sign component, return s and continue Algorithm 4 from line

8.
15: end for

2.5.2 B-M on the ASCD problem
We remind that for the computation of an Asymmetric Sign Component Decomposi-
tion (ASCD) [71], we recast the SDP problem as

min
X∈Sm,Y∈Sn

trace(Y)

s.t. trace(U⊤XU) = m(1− ϵ),

diag(X) = e,

X ⪰ 0,[
X B
B⊤ Y

]
⪰ 0.

(2.18)

40

As we already mentioned, we have to perform multiple eigenvalue decompositions,
which, for growing n, raise considerably the time required to solve the SDP. In fact, if
we solve the SSCD using the Burer-Monteiro approach, then solving (2.18) becomes
the computational bottleneck and it needs a considerable amount of time to be solved.
A straightforward approach to circumvent this problem would be to solve it with the
Burer-Monteiro approach as well. If we consider X = ZZ⊤, where Z ∈ Rm×p (where
p ∈ N and is a parameter that we arbitrarily set), (2.18) is transformed into

min
Z∈Rm×p,Y∈Sn

trace(Y)

s.t. ∥U⊤Z∥2F = m(1− ϵ),

∥zi∥2 = 1, for all i ∈ {1, . . . ,m},[
ZZ⊤ B
B⊤ Y

]
⪰ 0.

(2.19)

As we have already mentioned, the projection of Z onto the set {Z ∈ Rm×p :
∥U⊤Z∥2F = m(1 − ϵ)} does not have a closed form solution. By introducing the
constraint as a penalty term, we get the following new problem

min
Z∈Rm×p,Y∈Sn

f(Z,Y) = trace(Y) + λ(∥U⊤Z∥2F −m(1− ϵ))2

s.t. ∥zi∥2 = 1, for all i ∈ {1, . . . ,m},[
ZZ⊤ B
B⊤ Y

]
⪰ 0.

(2.20)

We use alternating optimization (AO) to solve this problem. The gradient of the cost
function with respect to Z is

∇Zf(Z,Y) = (4λ(∥Ũ⊤Z∥2F −m(1− ϵ)))ŨŨ
⊤
Z, (2.21)

while the gradient with respect to Y is

∇Yf(Z,Y) = In. (2.22)

Our B-M algorithm for ASCD is presented in Algorithm 11.
For this algorithm, we see that computing an eigenvalue decomposition is rein-

troduced, increasing the total cost of the algorithm to O((n + m)3). However, we
observed that the number of EVDs that are computed are considerably lower than
our other PG algorithms that do not use B-M.

2.6 Numerical Experiments
All experiments in this section are run on MATLAB R2018a on a laptop with AMD
Ryzen 7 5800H @ 3.2 GHz and 16GB RAM 1.

1The code is available at https://gitlab.com/ckolomvakis/robust-binary-component-
decompositions

https://gitlab.com/ckolomvakis/robust-binary-component-decompositions
https://gitlab.com/ckolomvakis/robust-binary-component-decompositions

Chapter 2. Robust Binary Component Decompositions 41

Algorithm 11 Projected gradient method for ASCD with the Burer-Monteiro
scheme.
Require: Input matrix B ∈ Rm×n, parameter p to form Z ∈ Rm×p, matrix U ∈

Rm×r, a scalar ϵ > 0, outer_lim upper limit of penalty method iterations (outer
iterations), parameter λ > 0 for the penalty method, parameter c > 1 that will
be used to increase λ after every outer iteration.

Ensure: Solves (2.20) approximately.

1: Form an initial symmetric Y0 initially drawing elements from a standard normal
distribution and form an initial Z0 ∈ Rm×p, with each element being drawn from
U [0, 1].

2: k = 1, Zk = Z0

3: j = 1, Yj = Y0

4: while maximum alternating optimization iterations have not been reached do
5: for l = 1, . . . , outer_lim do
6: k = 1
7: while maximum gradient iterations have not been reached do
8: Compute the gradient via (2.21).
9: Compute step η1 via Armijo backtracking line search.

10: Zk+1 = Zk − η1∇Zf(Zk,Yj)
11: Divide each row of Zk+1 by its norm to fulfill the constraint in (2.20).
12: k ← k + 1.
13: end while
14: λ = cλ
15: end for
16: Project the matrix

[
ZkZ

⊤
k B

B⊤ Yj

]
onto the set of psd matrices.

17: Extract the matrices ZkZ
⊤
k and Yj and then extract Zk.

18: j ← 1
19: while maximum gradient iterations have not been reached do
20: Compute the gradient via (2.22).
21: Compute step η2 via Armijo backtracking line search.
22: Yj+1 = Yj − η2∇Yf(Zk,Yj)
23: j = j + 1.
24: end while
25: Project the matrix

[
ZkZ

⊤
k B

B⊤ Yj

]
onto the set of psd matrices.

26: Extract the matrices ZkZ
⊤
k and Yj and then extract Zk..

27: end while
28: Perform any SSCD algorithm on ZkZ

⊤
k to extract the sign components of B.

2.6.1 Original experiments from [62]
As far as we know, there do not exist heuristic algorithms for SSCD itself, only the
algorithm of [70] in the noiseless case. Hence, as far as we know, Alg. 2.2 is the first

42

to handle the noisy SSCD problem. On the contrary, Semi-bMF is rather popular,
and several heuristics have been introduced recently. We will compare our approach
to a tensor-based approach [104] and the matrix decomposition-based approaches in
[105].

2.6.1.1 Synthetic experiments under various levels of noise

For our first experiment, we consider r = 4, m = 45, n = 65. The input matrix
C ∈ Rm×n is generated via a binary factor Z ∈ {0, 1}m×r, whose elements have a
probability of 1/2 to be either 0 or 1, and a random matrix W ∈ Rr×n with standard
normal elements. Random Gaussian noise N ∈ Rm×n is then added, as well as an
additional term (1/15)(cd⊤) (as it was done in [105]), where c ∈ Rm and d ∈ Rn

are uniformly distributed in [0, 1]. We define the Signal to Noise Ratio (SNR) as
SNR = 10 log10

(
∥ZW∥2F /(σ2

N∥N∥2F)
)
, with σ2

N varying according to the SNR value
considered. The number of trials for each SNR value is set to 20.

For ABCD, we solve the SDPs through CVX [49] (denoted as ’ABCD algorithm
using IPM’), and through our first-order approach (denoted as ’ABCD algorithm using
PG’, where PG stands for ’Projected Gradient’). We set ϵ = 0.05. The approaches
presented in [105] are a coupled matrix factorization (CMF) method (denoted as ’CMF
alg.’) and an Alternating Least Squares (ALS) method for Semi-bMF (denoted as
’ALS’). The tensor-based approach from [104] is referred to as ’Algebraic’.

Our comparing metric, noted Hamming distance here, is calculated as follows:

• We convert the retrieved binary factor into a factor in {±1}m×r.

• Since the columns of the retrieved factor are only identifiable up to a permuta-
tion, we align them with the groundtruth by solving a minimum-cost assignment
problem: we build the cost matrix M ∈ Rr×r with entries

Mij = min
(
d(si, s

⋆
j), m− d(si, s

⋆
j)
)
,

where si denotes the i-th retrieved column and s⋆j the j-th groundtruth column.
We then compute the optimal permutation π that minimizes

∑r

i=1
Mi,π(i) (e.g.,

using the Munkres/Hungarian algorithm).

• The column-wise discrepancy is measured with

d(si, s
⋆
j) = ∥(e− si ⊙ s⋆j)∥22/4,

which counts the number of mismatched entries between si and s⋆j .

Figure 2.3 displays the results. We observe that for all SNR values, the best perfor-
mance is achieved by ’Algebraic’. For SNR > 10, our approach becomes competitive
and performs better than all other methods except ’Algebraic’. As with ’Algebraic’,
we can provide a proof of robustness [104]. Another advantage of our method is that
it computes the rank-one factors in a greedy fashion: in noisy settings, we could lever-
age this property to estimate the rank depending on the reconstruction error after
each rank-one factor is added.

Chapter 2. Robust Binary Component Decompositions 43

0 5 10 15 20 25 30 35 40
SNR

0

5

10

15

20

25

30

35

40

45

M
ea

n
H

am
m

in
g

di
st

an
ce

ABCD algorithm using IPM (11.32s)
ABCD algorithm using PG (6.72s)
NMF + two-means clustering (0.005s)
Algebraic (0.007s)
CMF alg. (algebraic initialization) (1.14s)
CMF alg. (random initialization) (1.14s)
CMF (ABCD alg. initialization) (1.1s)
ALS initialized by CMF alg. (algebraic init) (0.03s)
ALS with random initialization (0.08s)
ALS with IPM ABCD algorithm initialization (0.02s)

Figure 2.3: Mean Hamming Distance over 20 trials. The legend includes the average
running time at SNR 20dB.

2.6.1.2 Scalability tests

Let us compare the execution time for the two methodologies presented to tackle
ABCD. In this experiment, C is generated via a binary factor Z, whose elements are
drawn from a uniform distribution in [0, 1] and then rounded to the nearest integer,
while W has elements generated from a standard normal distribution. Standard
normal noise N is added and the SNR for this experiment is at 13 dB. We set ϵ = 0.05
for both methods. The number of trials for each instance considered is 20. The results
are presented in the table below which provides the mean execution time.

(m,n, r) tIPM (s.) tPG(s.)
(90, 90, 6) 247.1626 82
(140, 120, 5) 1623.3 188.7
(200, 200, 5) − 521.9
(260, 290, 4) − 915.7

CVX could not solve the last two cases due to high memory requirements. We denote
the result of these experiments as ’-’. In one of the trials for (m,n, r) = (140, 120, 5),
the first-order method retrieved one element of the binary factor wrong. In the rest
of the trials, all methods retrieved the binary factor exactly.

44

2.6.2 Comparison of the B-M approach versus the PG ap-
proach

In this section, we will be comparing the scalability of our previous PG method and
the new B-M approaches. We initially test the B-M approach in both SSCD and
ASCD and compare with our original results. We also consider additional larger
datasets. We also run tests where we use the B-M method only for SSCD and not for
ASCD, compare the performance gains and notice the distinct gains from using B-M
in each SDP. For all experiments for the B-M method, we performed 1 alternating
optimization iteration.

2.6.2.1 Extending the scalability experiments

We repeat the scalability experiments with new results from our B-M methods. We
also report new results from our original PG method, where we perform more gra-
dient steps for the ASCD decomposition. While in the original experiments we only
performed 1 gradient step, here we perform 5, in order to improve the performance
of the PG algorithm. For B-M we set p = 3r. We perform 20 trials and report on the
average time.

(m,n, r) tIPM (s.) tPG(s.) tBM (s.)
(90, 90, 6) 247.1626 106.88 2.32
(140, 120, 5) 1623.3 240.18 4.64
(200, 200, 5) − 677.8 6.59
(260, 290, 4) − 704.71 12.35
(500, 550, 5) − 7038 28.61
(1000, 1100, 6) − > (24h) 300.02

For the PG method we also report the following: For (m,n, r) = (90, 90, 6), 3 trials
did not find the ground truth, while for next three instances, one trial did not find
the ground truth. For (m,n, r) = (500, 550, 5) the average time increases significantly.
Furthermore, out of the 20 trials, 3 could not find the ground truth. The B-M method
was able to find the ground truth in all trials but one for (m,n, r) = (1000, 1100, 6).
Furthermore, for the latter parameters, the PG method exceeded a time limit of 24
hours, after which we terminated the algorithm.

2.6.2.2 Testing the two PG ASCD alternatives

Finally, we perform experiments where we use the B-M method for the SSCD, and
compare between using just PG and using the B-M method for ASCD. We denote
the time for using simple PG for ASCD as tPG2

.

(m,n, r) tPG(s.) tPG2
(s.) tBM (s.)

(90, 90, 6) 106.88 17.85 2.32
(200, 200, 5) 677.8 103.77 6.59
(260, 290, 4) 704.71 166.35 12.35

Chapter 2. Robust Binary Component Decompositions 45

We observe that the bulk of the performance gains are obtained by solving the SSCD
using the B-M method. We also observe that not using B-M for the ASCD still
keeps a considerable computational overhead, as there are still a lot of eigenvalue
decompositions performed. Using B-M for ASCD as well allows for greater scalability:
almost 50x faster for (90, 90, 6), more than 100x faster for (200, 200, 5) and 57x faster
for (260, 290, 4). Furthermore, the number of Eigenvalue decompositions dramatically
decrease by using the B-M method for ASCD as well, and this is seen on the results
reported above. More specifically, by using B-M for all SDPs, the only point where an

eigenvalue decomposition is performed is in the enforcement of the
[
ZZ⊤ B
B⊤ Y

]
⪰ 0

constraint.
In these last two experiments, we showed that using B-M to solve the SDPs not

only gives a considerable speedup in comparison to our simpler PG algorithms, but
it also still performs well in finding the ground truth.

2.7 Conclusion
In this chapter, we extended the algorithms for SSCD, ASCD and ABCD proposed
in [70, 71] to handle noisy data. We also proposed gradient methods to deal with
the various SDP problems that arise in the decompositions. First, we proposed a PG
algorithm to deal with the SDP of the SSCD decomposition. We also proposed the
use of the Burer-Monteiro scheme to further scale the SDPs of the SSCD and the
ASCD. Although this introduces more hyperparameters that need to be chosen well
by the user, it provides a considerable improvement, while not compromising on its
performance, in comparison to our work in [62].

Finally, we discuss possible future work directions for the work of this chapter.

• While we have provided many experiments comparing our methods, we have
restricted ourselves to synthetic data. Future work may include testing our
methods on real datasets and comparing them with other similar methods. We
can also test other decompositions, like NMF, and see whether our methods
can provide better approximations, in terms of error or in terms of more inter-
pretable results.

• Another thing to note is that in general we experimented with lower ranks. If
we were to repeat some of the scalability experiments with the same level of
noise, for fixed n,m and with increasing rank, the probability of not finding the
ground truth increases. It would be interesting to examine why this happens
and how this can be improved.

• Another interesting work would be to understand why our methods were suf-
fering less from noise, based on the figure 2.3.

• Finally, further improvement on the B-M method for ASCD could be done by
factorizing entirely the block matrix[

X B
B⊤ Y

]
,

46

and not just X, to remove all psd constraints from the problem and scale the
algorithm further.

Chapter 3

Novel Algorithms for Boolean
Matrix Factorization

In this chapter we consider Boolean matrix factorization. We first propose an algo-
rithm for BMF relying on alternating optimization (AO) using integer programming
(IP). Building on this algorithm, we then use combining schemes to further enhance
this algorithm and find better solutions.

We then propose new greedy methods, that lead to significantly more scalable
algorithms. Through our experiments we show that they are competitive with the
state of the art, even though they are more simple. We showcase the performance
of all our proposed methods and compare with the state of the art on various real
datasets, including applications in topic modeling and imaging.

The content of this chapter is adapted from the following publications:

• C. Kolomvakis, A. Vandaele and N. Gillis, "Algorithms for Boolean Matrix Fac-
torization using Integer Programming," 2023 IEEE 33rd International Workshop
on Machine Learning for Signal Processing (MLSP) [63],

• C. Kolomvakis, T. Bobille, A. Vandaele and N. Gillis, "Algorithms for Boolean
Matrix Factorization using Integer Programming and Heuristics", submitted for
journal publication.

This chapter is organized as follows: In Section 3.1, we formally define BMF,
showcase BMF’s benefits compared to bMF and the property of BMF of mining
overlapping communities. We conclude the section by referencing related work. In
Section 3.2, we describe our proposed alternating optimization (AO) algorithm for
BMF where the subproblems are quadratic integer programs (IPs). We also provide
two initialization strategies for the AO algorithm. In Section 3.3, we provide an
IP formulation to optimally combine several BMF solutions and extend on what
we previously proposed in [63]. In Section 3.4 we introduce our greedy algorithms to
tackle the BMF problem. We start by showing how we solve the Boolean least squares
problem and we finish the section by presenting greedy combining algorithms, similar

47

48

to Section 3.3. Section 3.5, is our experimental section where we test on a variety of
real-world datasets, including topic modelling and imaging.

3.1 Boolean matrix factorization (BMF)
Let us first define the matrix Boolean product.

Definition 3.1 (Boolean matrix product) Given two Boolean matrices,
W ∈ {0, 1}m×r and H ∈ {0, 1}r×n, their Boolean matrix product is denoted W ◦H ∈
{0, 1}m×n and is defined for all i, j as

(W ◦H)ij =
r∨

k=1

Wik ∧Hkj =
r∨

k=1

WikHkj , (3.1)

where ∨ is the logical OR operation (that is, 0∨0 = 0, 1∨0 = 0∨1 = 1, and 1∨1 = 1)
and ∧ is the logical AND operation (that is, 0∧0 = 0, 1∧0 = 0∧1 = 0, and 1∧1 = 1).
For scalars that are in {0, 1}, the Boolean AND and the standard multiplication are
equivalent opeations. Interestingly, for matrices with binary elements, we can link the
Boolean matrix product with the standard matrix product via the relation W ◦H =
min(1,WH) where WH is the standard matrix product of W and H.

We now show an example of a Boolean matrix product. Let us consider

W =

1 0
1 1
0 1

 and H =

[
1 1 1 0
1 0 0 1

]
,

then the Boolean matrix product is

W ◦H =

1 1 1 0
1 1 1 1
1 0 0 1

 .

The Boolean operations restrict the elements of the product to be in {0, 1}. If we
performed standard matrix multiplication, the product instead would be

WH =

1 1 1 0
2 1 1 1
1 0 0 1

 ,

giving us an element that is not in {0, 1}.
Let us now define the BMF problem. To make it more general, we allow the input

matrix, X, to have missing elements. The matrix M is used to model incomplete
datasets, that is, datasets for which some values are unavailable. The matrix M
always has the same dimensions as the input matrix X. If an element X(i, j) is
observed, then M(i, j) = 1, otherwise it is equal to 0. For complete datasets (where
all of the elements are observed), M is the all-one matrix.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 49

Definition 3.2 (BMF) Given a Boolean matrix X ∈ {0, 1}m×n, a mask
M ∈ {0, 1}m×n, and a factorization rank r, BMF aims to find matrices W ∈
{0, 1}m×r and H ∈ {0, 1}r×n that solve

min
W∈{0,1}m×r,H∈{0,1}r×n

∥M ⊙ (X−W ◦H) ∥2F , (3.2)

where ⊙ is the Hadamard or elementwise product between two matrices of the same
dimensions, and ∥ · ∥2F is the squared Frobenius norm.

BMF allows one to find subset of columns and rows of X that are highly correlated,
since the entries equal to one in each binary rank-one factor W(:, k)H(k, :) correspond
to a rectangular submatrix of X that should contain many entries equal to one. The
Boolean OR operation among the rank-1 factors gives more flexibility to the W
and H factors, since any 1′s of the input matrix can be approximated by multiple
rank-1 factors. As an example, in community detection applications, this allows
BMF to detect overlapping communities. In contrast, in bMF, the rank-1 factors
should have disjoint support sets. Applications of BMF include role mining [79, 114],
bioinformatics [54, 78] and computer vision [73].

3.1.1 Illustrative example
Let us provide an illustrative example of BMF in community detection and how it
is able to detect overlapping communities. We consider a real binary dataset of 101
animals with 17 characteristics (for example, ’hairy’, ’can be airborne’, ’aquatic’) [39,
52]. We consider r = 3. The factors for a submatrix of the input are as follows:

hair feathers eggs aquatic milk
bass 0 0 1 1 0
bear 1 0 0 0 1

chicken 0 1 1 0 0
gorilla 1 0 0 0 1
ostrich 0 1 1 0 0
seahorse 0 0 1 1 0

=

1 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 0

◦
0 0 1 1 0
0 1 1 0 0
1 0 0 0 1

Each column of W and each row of H correspond to communities; in other words,
each rank one-factor W(:, k)H(k, :) correspond to a community. The columns of W
assign animals to the communities, while the rows of H assign the characteristics to
these communities. In this example, we see observe that the first community con-
tains the bass and the seahorse (first column of W), and the characteristics "eggs"
and "aquatic" (first row of H). Hence the first community represents the class of
aquatic animals. Similarly, the second community that includes ostrich and chicken
and the characteristics "feathers" and "eggs" corresponds to birds. The third com-
munity includes the gorilla and the bear and its characteristics include "has hair" and
"produces milk", and hence corresponds to mammals.

In Figure 1 represents a Venn diagram of the animals that are assigned to the
communities. Note that some animals are assigned to multiple communities. Figure

50

2 represents a Venn diagram of the characteristics that are assigned to the commu-
nities. These two figures show some additional features not present in the submatrix
above. Note that not all characteristics need to be present in an animal assigned to a
community (this corresponds to a 0 entry in X approximated by a 1). For example,
the penguin cannot be airborne, but is still correctly classified as a bird.

Figure 3.1: Venn diagram showing the
overlapping communities that animals
are assigned to.

Figure 3.2: Venn diagram showing the
overlapping communities that animal
characteristics are assigned to.

3.1.2 Previous works
We finish this section by referencing previous important works on BMF. Our focus
is on algorithms that have been proposed, identifiability results, and we also briefly
mention models that are closely related to BMF.

3.1.2.1 Algorithms

In a similar manner to [89], our brief review of past BMF works is split into combi-
natorial approaches, continuous approaches where the BMF problem is relaxed into
a continuous domain and other miscellaneous approaches.

Continuous approaches Common traits among continuous approaches (but not
the only possible ones) are to either introduce penalty functions in order to force the
factors to have Boolean elements, use a function on the product WH (a threshold-
ing function for example) to give an approximation that is a Boolean matrix, or a
combination of both.

In [90] the authors consider a non-linear function for the Boolean matrix product
and add penalty terms to enforce the factors to have elements either 0 or 1. The
authors then optimize on the nonnegative orthant. A similar work that optimizes
in the nonnegative orthant and enforces the factors to be binary through a penalty
term is in [111]. Works using proximal gradient algorithms can be found in [33, 55,
56]. More specifically, in [56] the proximal function is chosen to push the retrieved
factors close to 0 or 1 and to ensure that the factors end up being binary, a post-
processing procedure is performed that relies on grid search. The presented algorithm

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 51

is referred to as Primp. In [55], an extension is presented, which is called C-SALT.
C-SALT is an algorithm that is suited to be used for supervised learning, in contrast
to Primp (and usually most MF algorithms) for unsupervised learning. In [33], the
authors propose different proximal functions. They add an l1 and an l2 regularization
term to the factors (also known as an elastic-net regularizer) and each regularization
term has a parameter assigned to it. To ensure that the factors are Boolean, the
parameter of the l2 term is gradually increased after each alternating optimization
(AO) iteration. A projection step is only performed if the method ends and no
convergence has happened (for example, the maximum number of iterations have
been used). The first algorithm for federated BMF is presented in [34], where the
authors use the elastic-net regularizing term, as well as a term that makes sure that
all local processing units have the same factor locally stored.

Generalized versions of the Boolean matrix product are considered in [21, 41],
where instead of the Boolean OR, other logical operations are used, such as the
NAND and XOR. They then use a projected gradient to optimize the factors. FastStep
[3], is a scalable algorithm that computes non-negative factors and then produces a
Boolean approximation by applying a thresholding operator to the product WH.
The novelties of this algorithm are in the computation of the cost function and the
gradient, to reduce their costs and make it scalable.

Probabilistic approaches to BMF also exist. In [98], a Bayesian approach to BMF
is shown. The authors also fit the model through a metropolized Gibbs sampler. In
[94], the BMF problem is recast as a maximum a posteriori (MAP) problem. The
authors use probabilistic graphical models to implement a message passing algorithm
that can also provide scalability. Finally, the work in [77] proposes an expectation
minimization (EM) algorithm that does not make any prior assumptions for the fac-
tors. The work also shows an application in breast cancer subtype classification.

Combinatorial approaches We now begin our discussion on combinatorial algo-
rithms. One of the earliest combinatorial algorithms for BMF is in [23]. The method
is called 8M and it is part of a package called "Bio-Medical Data Package” (BMDP).
8M is revisited in [9] and expanded upon with a new algorithm, 8M+.

A seminal work on BMF is in [87], where the authors refer to the BMF problem
as the Discrete Basis problem (DBP). A greedy algorithm called ASSO is presented
that computes the factors based on the correlations between the columns of the input
matrix. It is also proved that approximating the BMF problem is NP-hard. An ex-
tended journal paper of this work is in [88], where the authors present improvements
to the ASSO algorithm and also examine a closely related problem which is called
Discrete basis partitioning problem (DBPP). DBPP is like the DBP with the addi-
tional constraint that H is a partition. A matrix is a partition, if each column has
exactly one non-zero element across all the rows. In contrast to DBP, DBPP can be
approximated in polynomial time.

PANDA [81] is an algorithm that sequentially retrieves the rank-1 components
one by one. While the user specifies the rank of the approximation, as is usually the
case with matrix factorization algorithms, PANDA will stop as soon as adding an
additional rank-1 component does not decrease the error. This means that it may

52

return an approximation with a number of components that is less than the rank
given by the user. PANDA+ [80] extends the PANDA algorithm so it can handle a
greater range of cost functions. Proximus [67] is an earlier algorithm that recursively
extracts sequentially rank-1 components for an input matrix.

We will next mention some algorithms that make use of Formal concept analysis
[26, 44], which is a mathematical framework that is used for data analysis. In [10], the
authors present two algorithms: A greedy approximation algorithm that is based on
an algorithm that solves the set covering problem. The second algorithm is a modified
version of the first algorithm, where the search space is significantly reduced. While
in [10] the algorithms are not named, in later works [8, 110] they are referred to, re-
spectively, as GRECON and GRECOND. We also note that both of these algorithms
are "from-below" algorithms. This means that if an entry in the input matrix is zero,
then the corresponding entry of the approximation matrix will always be zero. GRE-
COND+ [8] is an extension of GRECOND. One of its new features over GRECOND
is that it is not a "from-below" algorithm, it may fill an element of the approxima-
tion matrix with 1, even though the corresponding element in the input was zero.
GRECON2 [110] is an improvement over GRECON in terms of execution time. The
experiments of the paper show that the algorithm is considerably faster than both
GRECON and GRECOND, while not compromising on its performance.

In [52] three formulations of the BMF problem are compared that are Integer
Programs (IPs). They expand on a formulation that they initially presented in [65],
and compare with other BMF algorithms, including other IP formulations, like from
[66, 79]. Our previous work in [63] also falls into this category of combinatorial
algorithms that solve IPs to compute a BMF.

Other works The work in [5] aims to simplify the computation of a BMF through
the following method: reduce the number of 1-entries of the input matrix. Two
versions of this method are presented: one in which the rank of the original matrix
is not preserved, and one where it is. For the latter, guarantees are shown that an
optimal BMF for the simplified matrix is also an optimal BMF for the original input
matrix. CX and CUR decompositions [82] for binary matrices are presented in [86].

A different and unique approach is presented in [118]. In this paper, the authors
permute the input matrix to transform it into "Upper-Triangular Like". Through
geometric segmentation, they extract sequentially the rank-one factors. Genetic al-
gorithms for BMF can be found in [38, 102, 103]. Another heuristic algorithm, which
based on hillclimbing, is in [121]. This is another algorithm that falls into the cate-
gory of "generalized" BMF algorithms, in this case the "OR" operation of the Boolean
matrix product is substituted by the "XOR" operation.

Works on BMF that provide algorithms with theoretical guarantees (but some-
times also provide impractical algorithms), as well as approximating algorithms for
BMF (also with theoretical guarantees) are in [7, 11, 18, 42, 43]. Finally, a recent
work that uses collaborative neurodynamic optimization can be found in [76].

An interested reader is referred to a recent detailed survey on Boolean matrix
factorization in [89]. The authors not only analyze various algorithms for the BMF
problem, but also show problems that are equivalent to BMF (like bi-clique covering

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 53

[75] and the set cover problem [30, 45]), theoretical results, and several open problems.

3.1.2.2 Identifiability

Uniqueness results on BMF are limited. To the best of our knowledge, the only two
papers that present uniqueness results are [35, 90]. Each paper presents a different
approach.

The work in [90] proposes the definition of partial uniqueness with respect to a
rank-1 factor. To be more precise, let us consider a Boolean decomposition of rank
r and let us fix all rank-1 factors but one (we will refer to the non-fixed factor as
xk = wk ◦ h⊤

k). If xk is the only rank-1 factor that satisfies the decomposition, given
the other fixed rank-1 factors, we say that the Boolean decomposition is partially
unique with respect to xk. A Boolean decomposition is then considered unique if and
only if it is partially unique with respect to all its rank-1 factors.

On the other hand, in [35] the authors use the notions of freeness and the free rank
of a Boolean matrix. The freeness of two or mode Boolean vectors is presented as an
extension of the well-known property of linear independence among vectors. Vectors
that satisfy the freeness property are called free. Multiple equivalent definitions of the
free rank are given. One of them is the following: A Boolean matrix X ∈ {0, 1}m×n

has a free rank equal to r if it contains a r× r permutation matrix. Furthermore, the
authors distinguish between the free rank of a Boolean matrix and the Boolean rank
of a Boolean matrix.

3.1.2.3 Related factorizations

We conclude our discussion on related works by referencing extensions to the BMF
model that do not fall into the "generalized" BMF category of the previous para-
graph. Our recent work in [64] presents Boolean Matrix tri-factorization (BMTF). It
is defined as

X = W ◦ S ◦H ∈ {0, 1}n×m,

where W ∈ {0, 1}n×r1 , S ∈ {0, 1}r1×r2 and H ∈ Rr2×m as well an algorithm to
compute it. We also propose identifiability conditions. The Boolean CUR model that
we mentioned before is closely related to BMTF. A main difference between this and
our work is that identifiability or interpretability are not a main focus of the latter’s
work. BMTF is the main focus of Chapter 4 of this thesis.

Finally, we will briefly refer to Boolean Tensor factorization (BTF). Tensor fac-
torizations are generalizations of matrix factorizations, where the factor matrices are
more than two, and furthermore, the operations that are used form a tensor. Matrix
factorizations are, in fact, a specific case of tensor factorizations, where we are com-
puting two factors. An interested reader may refer to [40, 85, 93, 97, 117] for works
on BTF.

54

3.2 Alternating optimization (AO) for BMF
Most algorithms for LRMAs rely on iterative block coordinate descent methods: the
subproblem in H is solved for W fixed, and vice versa. The reason is that these
subproblems are typically convex in contrast to the main problem which is usually
much more difficult to solve. For BMF, this is of course not the case, because of the
Boolean matrix product. However, the advances in IP solvers, such as Gurobi [53],
allow one to tackle medium-scale problems efficiently.

3.2.1 IP formulation for BMF subproblems
Assuming W is fixed in (3.2), we would like to solve the following Boolean least
squares (BoolLS) problem in H, that is, solve

min
H∈{0,1}r×n

∥X−min(1,WH)∥2F .

Because of the nonlinearity in the objective, this cannot be solved directly with stan-
dard IP solvers. Note that the problem in each column of H is independent:

min
H(:,j)∈{0,1}r

∥X(:, j)−min(1,WH(:, j))∥22. (3.3)

For simplicity, let h = H(:, j) and x = X(:, j). Given W and x, we need to solve
minh∈{0,1}r ∥x−min(1,Wh)∥22. Introducing the variable z = min(1,Wh), (3.3) can
be reformulated as follows:

min
h∈{0,1}r,z∈{0,1}m

∥x− z∥22 s.t. Wh

r
≤ z ≤Wh. (3.4)

In fact, for W, h and z binary, Wh

r
≤ z ≤Wh if and only if z = min(1,Wh), since

Wh ∈ {0, 1, . . . , r}m. Now (3.4) is a convex quadratic optimization problem with
linear constraints over binary variables. Such problems can be solved with commercial
software, and we make use of Gurobi [53]. Other alternatives that are commercial IP
solvers are CPLEX [31] and Mosek [2]. An open source alternative is miOSQP [106].
For the case of missing data, we consider the following cost function

min
h∈{0,1}r,z∈{0,1}m

∥m⊙ (x− z)∥22 s.t. Wh

r
≤ z ≤Wh, (3.5)

where ⊙ denotes the Hadamard (or elementwise) product, and m is a weight matrix
such that mi = 1 if xi is not missing, and 0 otherwise. Our BoolLS algorithm for the
case where we have all the data available can be easily adjusted and applied to the
missing data case.

To give an idea of the computational time required for Gurobi to solve (3.4), let
us perform the following experiment for various values of m and r. The setting is as
follows: we generate the entries of W and h using the uniform distribution in [0, 1],
and then threshold all elements to convert them to binary. For all ranks tested, apart
from r = 50, if an element is larger than 0.7, it is converted to 1, otherwise we convert

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 55

it to 0. For r = 50, the threshold is set to 0.8. We chose relatively sparse W and h
to make sure min(1,Wh) is not the all-one vector (in fact, we regenerate W and h if
min(1,Wh) is the all-one or all-zero vector). Then we set x = min(1,Wh), and 10%
of the entries of x are flipped randomly1. Table 3.1 reports the results.

r\m 100 1000 5000 10000

2 0.002 0.02 0.47 1.8
5 0.003 0.03 0.47 1.87
10 0.005 0.04 0.56 2.2
20 0.012 0.12 2.4 12.0
50 0.049 2.52 38.0 235

Table 3.1: Average execution time in seconds over 30 trials of Gurobi to solve noisy
BoolLS problems (3.4) for various values of m and r.

The results are encouraging since solving (3.4) can be done exactly with Gurobi
in a reasonable amount of time, even for relatively large problems, e.g., it takes on
average Gurobi 12 seconds to solve this problem with m = 104 and r = 20. Note
that one could also use a timelimit for Gurobi, so that Gurobi would return the best
solution found within the allotted time (often IP solvers take much more time to
guarantee global optimality rather than finding the optimal solution).

3.2.2 AO for BMF
We can now solve BMF via AO over the factors W and H alternatively. Since
∥X − min(1,WH)∥2F = ∥X⊤ − min(1,H⊤W⊤)∥2F , the problem in W for H fixed
has the same form. We update H in a column-by-column fashion by solving the
independent BoolLS of the form (3.3), and similarly for W row by row. Algorithm 12
summarizes the AO strategy. We have added a safety procedure within AO (steps 4-
8): it may happen that some rows of H are set to zero (for example, if W is not
well initialized). In that case, we reinitialize these rows as the rows of the residual
R = max

(
0,X−max(1,WiHi)

)
whose entries have the largest sum. This guarantees

that the error will decrease after the update of W. Typically, AO needs a very small
number of iterations to converge to a local minimum, given the combinatorial nature
of the problem.

3.2.3 Initialization of AO
In this section, we provide two initialization strategies for AO-BMF, that is, Algo-
rithm 12.

1The noiseless BoolLS problem is much easier to solve since hk = 1 if and only if the support of
the kth column of W is contained in that of x, that is, W(:, k) ≤ x.

56

Algorithm 12 AO algorithm for BMF - AO-BMF

Require: Input matrix X ∈ {0, 1}m×n, initial factor matrix W0 ∈ {0, 1}m×r, maxi-
mum number of iterations maxiter.

Ensure: W ∈ {0, 1}m×r and H ∈ {0, 1}r×n such that X ≈ min(1,WH).

1: i = 1, e(0) = ∥X∥2F , e(1) = ∥X∥2F − 1.
2: while e(i) < e(i− 1) and i ≤ maxiter do
3: Hi = BoolLS(X,Wi−1).
4: K = {k | Hi(k, :) = 0}.
5: if K ̸= ∅ then
6: R = max

(
0,X−max(1,WiHi)

)
.

7: Hi(K, :) = R(I, :), where I contains the indices
8: of the |K| rows of R with largest sum.
9: end if

10: Wi = BoolLS(X⊤,H⊤
i)

⊤.
11: i = i+ 1.
12: e(i) = ∥X−min(1,WiHi)∥2F .
13: end while
14: return (W,H) = (Wi,Hi).

Randomly selecting columns or rows of X AO-BMF only requires W to be
initialized. By symmetry, it could also be initialized only with H, starting the AO
algorithm by optimizing over W. A simple, fast and meaningful strategy to initialize
AO-BMF is to initialize W (resp. H) with a subset of the columns (resp. rows) of X,
that is, set W = X(:,K) (resp. H = X(K, :)) where K is a randomly selected set of r
indices of the columns (resp. rows) of X.

NMF-based initialization The second initialization we propose relies on NMF.
NMF approximates X with WH where W and H are nonnegative. We use an NMF
algorithm from https://gitlab.com/ngillis/nmfbook/ which itself initializes the
entries of W and H using the uniform distribution in [0, 1]. Once an NMF solution
is computed, we binarize it using the following two steps:

• Normalize the columns of W and rows of H such that

max(W(:, k)) = max(H(k, :)) for all k,

using the scaling degree of freedom in NMF, that is,

W(:, k)H(k, :) = (αW(:, k))(α−1H(k, :)) for α > 0.

• Set the entries of W and H to 0 or 1 using a given threshold δ which is generated
uniformly at random in the interval [0.3, 0.7]. An alternative would be to use a
randomized grid search approach to determine δ, similar to [111, 125]. However,
we observed that selecting δ randomly performs better on average.

https://gitlab.com/ngillis/nmfbook/

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 57

It is important to note here that if the input matrix has missing elements, we can
only use the NMF-based initialization.

Finally, due to the difficulty of the BMF problem, when testing the AO BMF
algorithm, we perform multiple AO BMF runs, under a time limit, and report on the
best performing. We refer to this as Multistart AO (MS-AO).

3.3 Combining multiple BMF solutions
In this section, we present algorithms whose aim is to improve the performance of
AO-BMF. With BMF being an NP-hard problem, it is expected that any solution
we find is a local minimum. To avoid this, we use combining schemes, which gather
multiple solutions (W,H) and try to pick the r best rank-1 factors to minimize the
error. In this section we are extending on our proposals from [63] with new algorithms.

3.3.1 MS-Comb-AO
Algorithm 12, AO-BMF, is able to relatively quickly generate locally optimal solu-
tions for (3.2), in the sense that they cannot be improved by optimizing W or H
alone. A first natural approach to generate good solutions to BMF is using multiple
initializations, and keeping the best solution.

However, it is possible to combine a set of solutions in a more effective way. Assume
we have generated p rank-r BMFs: W1H1, . . . ,WpHp. This gives rp binary rank-one
factors, namely Wℓ(:, k)Hℓ(k, :) for k = 1, . . . , r and ℓ = 1, . . . , p. Let us denote these
rank-one binary matrices Ri for i = 1, . . . , N with2 N = rp. To generate a better
rank-r BMF, we can pick r rank-one binary factors among the Ri’s, by solving the
following combinatorial problem:

min
y∈{0,1}N

∥∥∥X−min
(
1,

∑
i

yiRi

)∥∥∥2
F

such that
∑
i

yi = r.

The variable y ∈ {0, 1}N encodes the r selected rank-one factors, that is, yi = 1 if Ri

is selected in the BMF. As for BoolLS, we can reformulate this problem as a quadratic
IP:

min
y.∈{0,1}N ,Z∈{0,1}m×n

∥X− Z∥2F (3.6)

such that
N∑
i=1

yi = r and
∑N

i=1
yiRi

r
≤ Z ≤

N∑
i=1

yiRi.

Denoting y∗ the optimal solution of (3.6), the rank-r BMF obtained,
∑

i
y∗i Ri,

is guaranteed to be at least as good as all the solutions {WiHi}pi=1, since they are
feasible solutions of (3.6). Once a solution combining several BMFs is computed, we
will further improve it using AO.

2In practice, we delete duplicated rank-one factors so that N ≪ rp.

58

We will refer to this algorithm, namely generating p solutions with AO-BMF, then
combining them solving (3.6), and then applying AO to that solution, as MS-Comb-
AO.
Finally, similarly to (3.5), we can also apply this combining scheme for the case where
we have missing data.

Gurobi can solve medium-scale problems of the form (3.6) in a reasonable amount
of time. Table 3.2 reports the time to solve (3.6) for m = n = 101, r = 5, and
N = 50 ∗ 2k for k = 0, 1, . . . , 4. For example, it takes about 30 seconds, to combine
160 rank-5 solutions (hence 800 rank-one factors) of a 105-by-105 matrix.

N 50 100 200 400 800
time (s.) 4.0 4.3 7.6 14.2 30.6

Table 3.2: Run times to combine N rank-one factors for a 105-by-105 matrix with
r = 5 (namely, the apb data set, see Section 3.5).

In practice, if N is too large, we do not need to take into account all rank-one
factors, and can only consider rank-one factors corresponding to the best BMFs.

3.3.2 Tree-BMF
We now propose another method that uses MS-Comb-AO as a building block which we
refer to it as Tree BMF. This method trades memory demands for time demands, that
is, our goal is to reduce memory demands by combining less solutions, but perform the
combining step multiple times, which may in return increase the time of the method.
Figure 3.3 illustrates how our method works.
The method requires two parameters: the depth of the tree as well as the number of
solutions for the MS-Comb-AO algorithm used by the leaf nodes. The procedure is
as follows: At the leaf nodes, we solve multiple independent MS-Comb-AO problems
according to the number of solutions specified by the user. Then, the leaf nodes send
their best solutions to their parent and the parent combines using only two pairs
of (W,H) factors. This continues until we reach the root node, where, after the
combination step is performed, the final factors are returned. We can see that the
bulk of memory demands is at the leaf nodes.

3.4 Greedy BMF heuristics
As we will show in Section 3.5, the IP based methods proposed in Sections 3.2.2 and
3.3 are competitive in comparison to the state of the art. However, using Gurobi
prevents us from scaling our inputs. For this reason, we present greedy heuristics
for the computation of a BMF. Greedy algorithms are often used as a way to solve
NP-hard problems in a quick manner. The trade-off is that, usually, the solutions
are suboptimal [30]. We start this section by proposing greedy algorithms to solve
the Boolean least squares problem, which we then use to solve BMF. We continue

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 59

Tree
BMF

Tree
BMF

MS-Comb
AO

MS-Comb
AO

Tree
BMF

MS-Comb
AO

MS-Comb
AO

Initially, the leaf nodes solve
MS-Comb–AO problems...

...then the factors computed are
propagated to the parents
where they are combined.

Figure 3.3: Sample Tree BMF with depth = 2. The order of the function calls for
this tree is depth-first postorder. Initially, the leaf nodes solve instances of MS-Comb-
AO and then propagate their solutions to the parent node, for it to combine. This
procedure continues until we reach the root node, when the final factors are returned.

by proposing combining schemes, similar to Section 3.3, that we can use to further
improve our solutions. These combining algorithms do not make any use of an IP
solver, such as Gurobi.

3.4.1 Greedy Boolean LS
We start our discussion with a first step in designing greedy algorithms for BMF, that
is, greedy algorithms to solve Boolean LS.

3.4.1.1 A first naive greedy algorithm

Recall the BoolLS problem:

min
h∈{0,1}r

∥x−W ◦ h∥22. (3.7)

The algorithm works as follows: h is initialized at the all-zero vector. The algo-
rithm sets entries to one in a greedy manner: We test every column of W as part
of the solution. The column that reduces the error the most is added as part of the
solution in h. If no column reduces the error, the algorithm terminates and returns
the current h. Any entries set to 1 are not set to zero later on.

At each iteration of this algorithm, the selection of the best column requires to
compare the r vectors of W (this can be done in O(rm)) and to update the element of
h corresponding (this can be done in O(1)). The number of iterations is bounded by
the number of elements of h because we set to 1 at least one component per iteration.
Therefore, the total complexity is in O(mr2).

For r = 1, the greedy algorithm is optimal. There are only two possible solutions,
h = 0 or h = 1. However, for r > 1, due to its greedy nature, it can miss the optimal

60

solution to a Boolean LS problem.
Consider the following

x =



1
1
1
1
1
0
0
0


, W =



1 0 1
1 1 0
1 0 1
1 0 1
1 1 0
1 0 0
1 0 0
0 0 1


.

The greedy algorithm will initially pick the first column and the error will be 2.
It will also test the second and third columns, which give an error of 3. After testing
all the columns, the optimal choice is the first column, so we set h = [1 0 0]⊤. The
algorithm continues by checking if we can add the second or the third columns as
part of the solution. Adding the second column does not further decrease the error,
while adding the third column increases the error by 1. Since none of the possible
choices further decreases the error, the algorithm terminates and returns h = [1 0 0]⊤

as the solution. However, h = [0 1 1]⊤ is the optimal solution, which gives an error
of 1. In the remainder of this section, we discuss additional algorithms to circumvent
suboptimality and get better performance.

3.4.1.2 Local Search Strategy

We propose an additional step to this greedy algorithm. The solution obtained is
perturbed by switching certain entries to improve the solution. We limit ourselves to
switch at most q bits that are chosen randomly. In our implementation we choose
q = ⌈log r⌉, where log r has a base of 2. With this q, once an approximation h ∈ {0, 1}r
is found we search randomly in the q-radius ball centered on this vector to find if there
is a better solution. The ball is defined as

B(h) = {s ∈ {0, 1}r | ∥h− s∥22 ≤ q}.

If we obtain a better solution, we recursively call the algorithm on this solution. We
set the limit of recursive calls as T = r. The algorithm is presented in Algorithm 13.
We will refer to the combination of the greedy algorithm and LOCALSEARCH as
Greedy-BLS.

It is worth noting that the inner for loop of the algorithm (which is the part of the
algorithm that performs the perturbations on h) starts at k = 2 and not k = 1. This
means that if we are to run the Greedy-BLS algorithm for r = 2, the LOCALSEARCH
step will effectively be skipped. This is because all possible solutions of h ([0 0], [1 0],
[1 1] or [0 1]) are explored and there is no need to use LOCALSEARCH.

3.4.2 Greedy combining methods
This algorithm is a loose adaptation of MS-Comb-AO, where the "building block"
algorithm is Greedy-BoolLS. We generate many solutions and store all the rank-one

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 61

Algorithm 13 LocalSearch algorithm
Require: h ∈ {0, 1}r,x ∈ {0, 1}m,W ∈ {0, 1}m×r, T ∈ N
T is the max number of recursive calls, q the radius of the search.

Ensure: h ∈ {0, 1}r
if T = 0 then

return h
end if
for i← 1, 2, . . . , T do

for k ← 2, . . . , q do
u← 0{0,1}r // We want to look at another solution vector at distance k from h.

while
∑r

j
u(j) < k do

idx← U({1, 2, . . . , r}) // uniform distribution of the set {1, 2, . . . , r}
u(idx)← 1

end while
h’← h⊕ u (XOR operator)
if ||x−W ◦ h’|| < ||x−W ◦ h|| then

h← LocalSearch(x, W, h’, T − 1)
end if

end for
end for
return h

factors. The rank-one factors are stored, in a vectorized form, as the columns of a
matrix that we call U. Let us assume that the number of all rank-one factors collected
is N and let us also consider a vector y2 ∈ Nr. The vector y2 functions similarly to
the vector y of MS-Comb-AO (it is a vector that picks the best rank-1 factors among
all of the collected ones) but is implemented differently. y is in {0, 1}N , where yj = 1
means that the j-th rank-one factor was chosen, and with the additional constraint
that the values of y must sum up to r. y2 is a vector in Nr whose elements designate
which rank-1 factors we are picking. If, for example, the j–th rank-one factor is
collected, then one of the values of y2 will be j.

We then consider the initial best solution (the best rank-r solution among the
solutions gathered by the multiple Greedy-BoolLS calls), and try to improve it by
randomly switching some of its rank-one factors. The algorithm is very similar to
the LocalSearch algorithm. However rather than applying it vector-per-vector, it
is applied to the rank-one factors. This is shown in Algorithm 14 and we will refer
to it as Heur-Comb. We refer to the whole algorithm (the gathering of solutions
through the Greedy-BoolLS algorithm and the collection of r rank-1 factors through
Algorithm 14) as Greedy-Comb. The total number of rank-1 factors collected is N .
Furthermore, similarly to section 3.3.2, we can also collect solutions gathered from
multiple calls to Greedy-Comb and greedily pick the best solutions. This means
substituting the gathering algorithm from Greedy-BoolLS to Greedy-Comb. We will
refer to this version of the algorithm as Greedy-TreeBMF.

62

Regarding the two for loops of the algorithm, the maximum number of iterations
is a pair of two parameters set by the user.

Algorithm 14 Heur-Comb
Require: vec(X) ∈ {0, 1}mn, columns of U ∈ {0, 1}mn×N are vectorized rank-one

factors, y2 ∈ [N]r collects the r selected rank-one indices, Tmax ∈ N is the max-
imum number of improvements, n_trials is the number of trials per potential
improvement.

Ensure: y2 ∈ [N]r

1: best_err = ∥X−
∑r

j=1
U(y2(j), :)∥F // initial error of the selected rank-one factors

2: T = 1, iter = 1
3: while iter ≤ n_trials and T ≤ Tmax do
4: u_idx← U({1, 2, . . . , N}\y2) // pick the index of a column of U not in y2.
5: idx← U({1, 2, . . . , r}) // pick an index of a column of U in y2

6: y′
2 = y2, y′

2(idx)← u_idx // y′
2 swaps the two above indices.

7: if ∥X−
∑r

j=1
U(y′

2(j), :)∥ < best_err then
8: y2 ← y′

2

9: best_err = ∥X−
∑r

j=1
U(y2(j), :)∥F

10: T = T+1, iter = 1
11: else
12: iter = iter+1
13: end if
14: end while
15: return y2

3.4.3 Custom data structure for Boolean vectors and matrices
in C++

The proposed greedy algorithms were written in C++. C++ is a low-level program-
ming language, which means that it allows for control over hardware (for example,
directly reading and writing into memory with greater efficiency than in a language
like Python or Julia). Although the language provides a default bool data type,
we created a custom data structure for Boolean matrices that uses less space than a
two-dimensional array that contains bool elements and can perform operations faster.
Furthermore, while there exist libraries for linear algebra in C++, like Armadillo [101]
or eigen [51], they do not take full advantage of the properties of the Boolean algebra.

In this section, we are going to provide more details regarding the data structures
used for the implementation of Boolean matrices and the corresponding operations
in C++ that will allow for greater scalability. We will make a brief mention of some
of the fundamental datatypes in C++, as well as their storage requirements. As
a low-level programming language, unlike MATLAB, Python, or Julia, declaring a
variable requires a data type as an additional argument. A variable can be, among
others, a char (which can store a single character and its size is 1 byte, i.e., 8 bits),

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 63

an int (which can store any integer from −231 to 231 and its size is 4 bytes), a
double (which can store high precision floating point numbers within the intervals
±(2.23 ∗ 10−308, 1.797 ∗ 10308) and its size is 8 bytes) and a bool (which takes the
values ’true’ and ’false’ and its size is 1 byte). We notice that even in the case of the
bool variable, there is the least requirement of 8 bits (= 1 byte). Due to Boolean
operations only using the values ’0’ and ’1’, our goal is to create a data structure that
solely uses 1 bit to represent them. For example, if we define a two-dimensional array
of Boolean values, each element requires 8 bits instead of 1. This gives considerable
improvements in terms of memory usage and computation time for Boolean matrix
operations.

Our design starts by initially creating a custom data structure which we will refer
to as a bitset data structure which we will use as a one dimensional array. Normally,
if we define an array of bool elements of size m, we use m bytes without the ability
to manipulate individual bits separately. So we are using 8 bits to represent a single
bool variable. With the bitset data structure, our goal is to modify bits separately,
as well as to represent each element of the array with only one bit. Our bitset data
structure uses an int array together with bitwise operations (for example, bitwise-or,
bitwise-and, as well as functions that modify an element or print an element of the
array). When we define a bitset array of m elements, since each bit corresponds
to one element of the array, the size of this custom array is of ⌈m

32
⌉ elements. If, for

example, we define a bitset array of 30 elements, although to the user it will seem
as they can normally modify and access 30 elements, in reality, we are only using just
one int variable. To illustrate further the memory benefits, we will use an additional
example, where we compare with a standard int array.

Let us compare a bool array with 50 elements and a bitset array with 50 ele-
ments. For the former, we are using 50*(8 bits) = 400 bits. For the latter, the array
is of size ⌈50

32
⌉ = 2. This means that we are only using 64 bits instead of 400 bits.

50 bits are used for the array, while the other 14 remain unused. To the user, the
bitset array still appears as an array of 50 elements, each element is just a bit. This
can also be viewed as compression; instead of using an array of n elements, our final
array is much smaller. All the operations will be done in a bitwise manner - and, or,
xor operations.

Our final goal, however, is to create Boolean matrices in an efficient manner, not
just one dimensional arrays. To that end, we define another data structure bitmatrix,
which contains a two dimensional bitset array that we will use to represent Boolean
matrices, as well as the definitions of the various operators that we need to use
- Boolean matrix multiplication, addition, element access and element retrieval, to
mention a few. We are going to observe in Section 3.5 that this allows for great
scalability in comparison to our Gurobi-based mixed integer programming (MIP)
methods.

In the next section, we present an experiment that shows that our custom im-
plementation outperforms other linear algebra libraries in C++. We emphasize that
this implementation was developed in-house, without initially being aware of existing,
more general, bit-level matrix representations. Our objective was not to provide a
full-featured Boolean linear algebra framework, but rather a lightweight and easily

64

adaptable data structure implementing only the operations required for our purposes.
Another example of a custom data structure specifically designed to handle Boolean
matrix operations can be found in [88].

3.5 Numerical Experiments
All experiments are performed with a 12th Gen Intel(R) Core(TM) i7-1255U 1.70
GHz, 16GB RAM. In the experiments where we use the methods that solve MIPs, we
are using Julia v. 1.10.

3.5.1 Comparison of our bitmatrix data structure
We start this section with an experiment that shows the gains made from our custom
data type. Our setting is the following: We perform Boolean matrix multiplication
between two square matrices of size n×n, for n ∈ {100, 500, 1000, 5000, 10000, 20000},
and whose entries are rounding of the uniform distribution in [0, 1] (hence these ma-
trices have on average as many zeros as ones)3. We choose this operation as this
is one of the most demanding and ubiquitous matrix operations. We are comparing
with the Eigen and Armadillo C++ linear libraries. From these libraries, the matrices
that we are using are of float type, which means that each element represents a real
number, and uses 32 bits to store it.

The reason why we choose each element to be of float type, instead of bool or
uint_8 (where each element would instead be represented by 8 bits), is because of
the use of the BLAS routines [13], which are only available for float and double
matrices. BLAS (which stands for "Basic Linear Algebra Subprograms") are routines
that provide standard building blocks for performing basic vector and matrix oper-
ations. Its matrix multiplication routine, which is called GEMM (which stands for
’general matrix multiplication’), is the heavily optimized function that is widely used
for dense matrix–matrix multiplication.

We present the time it took to execute the multiplications (in seconds), for each
data size and each data structure considered in Tables 3.3, 3.4. We are reporting
averages over 10 trials.

n 100 500 1000 5000
bitmatrix 7.21× 10−5 s. 0.003 s. 0.008 s. 0.375 s.
Eigen [51] 5.093× 10−5 s. 0.004 s. 0.032 s. 3.05 s.

Armadillo [101] 0.0004 s. 0.017 s. 0.047 s. 3.44 s.

Table 3.3: Results of the Boolean matrix multiplications for the multiple sizes con-
sidered and all the data structures considered. Average run times for 10 such multi-
plications.

3Note that the Boolean product of such matrices will be, with very high probability, the all-one
matrix. The goal here is to compare computational and memory demand of different data structures.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 65

n 10000 20000
bitmatrix 3.71 s. 40.49 s.
Eigen [51] 24.88 s. 195.23 s.

Armadillo [101] 26.11 s. 203.86 s.

Table 3.4: Results of the Boolean matrix multiplications for the multiple sizes con-
sidered and all the data structures considered. Average run times for 10 such multi-
plications.

We see that our bitmatrix data structure performs better than the other libraries,
for all data sizes considered except for n = 100, where Eigen has the best performance.
For n = 500, bitmatrix performs slightly better than Eigen and much better than
Armadillo. Finally, for all n ≥ 1000 considered, our bitmatrix data structure per-
forms much better than the other two libraries. We observe that taking into account
the properties of Boolean algebra allows for greater performance gains. This exper-
iment confirms that our decision to create a custom data structure, specifically for
Boolean matrices and their operations, to obtain memory and performance gains was
worth it.

3.5.2 Experiments from the datasets in [52]
We next perform experiments on four real binary data sets with no missing data and
four real binary data sets with missing data used in [52], which come from [39, 68];
see Tables 3.5 and 3.6. As in [52], we use r = 2, 5, 10 for all data sets.

zoo heart lymp apb
m× n 101× 17 242× 22 148× 44 105× 105

Table 3.5: Four binary real-world data sets.

tumor hepatitis audio votes
m× n 339× 24 155× 38 226× 92 435× 16

#missing 670 334 899 392
%observed 24.3 47.2 11.3 49.2

Table 3.6: Four binary real-world incomplete data sets.

In [52], the authors proposed two non-trivial IP-based approaches for BMF that
perform well against the state of the art (they used a 20 minutes time limit for their
method), namely against a greedy scheme [52], ASSO and ASSO++ [88], a penalty
formulation from [125], and an NMF-based heuristic. Table 3.7 reports the best result

66

of all these methods for the four data sets. From now on, we will report the result of
our methods, by comparing it with the best solution from [52] provided in Table 3.7.

r = 2 r = 5 r = 10

zoo 271 126 39
heart 1185 737 419
lymp 1184 982 728
apb 776 684 573

tumor 1352 962 514
hepatitis 1264 1138 907

audio 1419 1064 765
votes 1246 779 240

Table 3.7: Objective function ∥M⊙ (X−min(1,WH))∥2F of the best solution found
by various algorithms in [52, Table 4, page 20].

Results from two other papers We have also run two recent algorithms, from [33]
and [21], on these data sets. The method in [33] is based on a continuous reformulation
of BMF and uses alternating proximal projected gradient method to solve it. We have
used the parameters of the algorithm recommended by the authors. Table 3.8 reports
the results. Out of curiosity, we initialized AO with the best solutions found. We
observe in Table 3.8 that AO is able to significantly improve these solutions, showing
that the continuous reformulations of [33] is not able to generate locally optimal
solutions.

r = 2 r = 5 r = 10

zoo +11 | 0 +5 | -1 +18 | +5
heart +65 | +18 +29 | -1 +33 | +26
lymp +64 | +25 +88 | -10 +203 | +60
apb +72 | +30 +59 | +43 +33 | +15

Table 3.8: Best result obtained with the method in [33] (left), and result of this best
solution improved by AO (right). The numbers indicate the difference compared with
the best values in Table 3.7. A negative value means an improvement, a positive value
means a worse solution.

Next, we show the results for the method in [21]. Note that this paper provides
a rather general approach, allowing for other Boolean operations between the factors
to approximate the entries of X. Their approach is also based on some continuous
reformulations, and the use of gradient and descent methods. Table 3.9 reports their
result, using 15 trials where each trial uses 10 random initializations, each optimized

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 67

with 2000 iterations. We also use AO to improve the best solutions found by this
method, and observe a similar behavior as for the method from [33].

r = 2 r = 5 r = 10

zoo +2 | 0 +7 | +4 +10 | +4
heart +165 | +9 +33 | +4 +86 | +57
lymp +214 | -3 +49 | -16 +123 | +5
apb +48 | 0 +51 | +23 +112 | +43

Table 3.9: Best result obtained with the method in [21] (left), and result of this best
solution improved by AO (right). The numbers indicate the difference compared with
the best values in Table 3.7.

In summary, on these data sets, we observe that the algorithms from [21, 33]
provide solutions which are much worse than the best solutions provided in [52], and
that AO can considerably improve the solutions of these two methods, sometimes
obtaining better solution than the best from [52] (e.g., for the lymp data set with
r = 5).

Before introducing the results from our algorithms, we explain in more detail how
we set up the parameters based on the time limits.

• MS-AO: We generate as many BMFs as possible with AO-BMF within the
time T , and return the best solution. The initialization of AO-BMF is chosen
alternatively as one of the two strategies (NMF-based or random columns/rows
of X).

• MS-Comb-AO: As explained in Section 3.3, we generate as many BMFs as
possible with AO-BMF (as for MS-AO) within time 3T/4, and then combine
them by solving (3.6) with a time limit of T/4. We used the same random seed
so that the solutions generated are the same as for MS-AO, except that less
solutions are generated, since only 3/4 of the total time is spent for that.

• Tree-BMF: We consider the depth of the tree to be 1. For T = 30 seconds, the
leaf nodes will gather 5 solutions, while for T = 5 minutes, they will gather 15
solutions. When moving to the next level of the tree, the given time to compute
a BMF is divided by two. Furthermore, in a non-leaf node, the combining step
is also performed in T/2 time.

• Greedy-Comb: For both T = 30 seconds and T = 5 minutes, we gather solu-
tions using Greedy-BoolLS for T seconds to fill the U matrix. This constitutes
a Monte Carlo trial. We repeat 5 trials and report the best solution.

• Greedy-TreeBMF: We again consider the same time limits. We gather the
solutions from several Greedy-Comb calls and greedily pick the final solution
among them. For T = 30 seconds, Greedy-Comb is called 3 times and each call
has a limit of 10 seconds. For T = 5 minutes, Greedy-Comb is called 5 times

68

and each call has a limit of 60 seconds, to fill the U matrix. This is a Monte
Carlo trial and we report the best results among 5 trials.

3.5.2.1 Results and discussion

We present the results in Tables 3.10 - 3.12. For all methods we test for T = 30
seconds and for T = 5 minutes, like in [63].

• MS-AO: Quite surprisingly, MS-AO is already able to perform on par or im-
prove upon the state of the art. With a 30 seconds time limit, it does on 8 out of
12 cases: 5/12 cases with improvements, sometimes significant as for the lymp
data set, and 3/12 cases with the same objective. However, for 4 data sets,
it is not able to achieve the best solution reported in Table 3.7, although the
generated solutions are only slightly worse (+6 at most). With a 5 minutes time
limit, it performs better or on par on 10 out of the 12 cases, and it produces a
slightly worse solution in two cases (+2).

• For the incomplete datasets, when T = 30 seconds, there are 4/12 cases where
our method performs better, 2/12 cases where it performs as well as the com-
peting methods and 6/12 cases where it provides worse results. There is con-
siderable improvement when we let our algorithm run for T = 5 minutes: In
7/12 cases, the algorithm provides a better solution, in 2/12 cases the error is
as good as the best competing solution and there are only 3/12 cases where we
get a worse solution.

MS-AO MS-Comb-AO Tree
BMF

Greedy
Comb

Greedy
TreeBMF

r = 2

zoo 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0
heart +2 | +2 +2 | 0 +2 | +2 +2 | +2 +2 | +2
lymp -10 | -10 -10 | -10 -10 | -10 -10 | -10 -7 | -7
apb 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0

r = 5

zoo -1 | -1 -1 | -1 -1 | -1 -1 | -1 -1 | -1
heart -1 | -1 -1 | -1 -1 | -1 -1 | -1 -1 | -1
lymp -25 | -32 -25 | -32 -27 | -34 -38 | -38 -33 | -38
apb +6 | -6 -1 | -6 -6 | -7 -6 | -6 -7 | -6

r = 10

zoo +3 | 0 0 | 0 0 | 0 +7 | +3 +8 | +6
heart 0 | 0 0 | 0 0 | 0 +18 | +18 +18 | +18
lymp -15 | -34 -15 | -34 -19 | -34 -12 | -24 -9 | -31
apb +4 | +2 +2 | -7 -7 | -7 -1 | -2 -2 | -4

Table 3.10: Results for all our proposed methods for both timelimits considered. This
Table is for the datasets with no missing elements. In bold is the best performing
method for a given dataset and rank, with the second best performing method being
underlined.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 69

MS-AO MS-Comb-AO Tree
BMF

r=2

tumor +2 -1 -1 -1 -1 -1
hep/tis 0 0 0 0 0 0
audio -8 -8 -8 -8 -8 -8
votes 0 0 0 0 0 0

r=5

tumor +17 -7 -3 -10 -11 -10
hep/tis -119 -139 -120 -129 -128 -135
audio -24 -25 -17 -25 -25 -25
votes +35 -12 +27 -8 -60 -78

r=10

tumor +68 +18 -2 -4 -4 -2
hep/tis -113 -145 -107 -151 -145 -154
audio +16 +16 +2 -12 -3 -16
votes +295 +213 +135 +104 +153 +52

Table 3.11: Part of our results for all our proposed methods for both timelimits
considered. This Table is for the datasets with missing elements. In bold is the best
performing method for a given dataset and rank, with the second best performing
method being underlined.

Greedy
Comb

Greedy
TreeBMF

r=2

tumor -1 -1 -1 -1
hep/tis 0 0 0 0
audio -8 -8 -8 -8
votes 0 0 0 0

r=5

tumor -5 -19 -1 -19
hep/tis -138 -143 -136 -148
audio -26 -29 -9 -27
votes -66 -66 -66 -66

r=10

tumor +15 +8 +3 +3
hep/tis -147 -157 -146 -158
audio +41 +39 +37 +30
votes +20 -4 +27 -15

Table 3.12: The remaining part of our results for all our proposed methods for both
timelimits considered. This Table is for the datasets with missing elements. In bold
is the best performing method for a given dataset and rank, with the second best
performing method being underlined.

• MS-Comb-AO: For some data sets, AO is already able to generate very good
solutions, and hence solving (3.6) is not useful, e.g., for the lymp data set.
However, for most cases, this combination is beneficial, sometimes significantly.
In particular, with the timelimit of 30 seconds on the apb dataset for r = 5, the

70

best solution found by AO-MS has error 689 (+6) while the combination leads
to an error of 682 (-1); for the zoo data set with r = 10, it goes from 42 (+3) to
39 (0). A similar behavior is observed for 5 minutes: for the apb data set with
r = 10 from +2 to -7, and the heart data set from +2 to 0.

MS-Comb-AO with a 5-minute timelimit is able to either perform on par with
the state of the art (we suspect that for these data sets, the corresponding
solutions are optimal), or outperform it, sometimes significantly (in particular
for the lymp data set).

On the incomplete datasets, for T = 30 seconds, we observe that in 7/12 cases
we get an improved solution, in 2/12 cases we get a solution with an error as
good as the competing methods and in 3/12 cases we get a solution that is worse.
When we increase the time limit to T = 5 minutes, we have 9/12 cases where
we get an improved solution, 2/12 cases where our solution does not improve
on the competitors and only 1 case where our method performs worse.

• Tree-BMF: For the "heart" dataset and for r = 2 it seems to be giving a result
that is not competitive. However, for all other cases it offers a considerable
improvement over MS-Comb-AO. For 6/24 cases have a result as good with the
competing methods and for the rest 17/24 cases, Tree BMF provides a better
result.

• Greedy-Comb: The results are encouraging. We observe that in 13/24 cases
the method gives us improvements over the solutions in [52], in 5/24 cases we
get solutions as good as the competing methods. Finally, we have 6/24 cases
where our solutions are not as good. We observe that this method performs
considerably better on the "votes" dataset than our MIP based methods.

• Greedy-TreeBMF: It provides an improvement over Greedy-Comb. For 15/24
cases, the method gives us improvements over the solutions in [52], in 4/24
cases we get solutions as good as the competing methods. Finally, we have 5/24
cases where our solutions are not as good. A noticeable result is that Greedy-
TreeBMF is the only method that can provide an improvement over the ’votes’
dataset.

Conclusions: Both for the greedy methods as well as for the MIP Gurobi methods,
adding complexity (in the sense that we are utilizing methods that combine more
solutions) can improve our results. The greedy methods generally give competitive
results (with some exceptions, namely for the ’heart’ dataset for r = 2 and r = 10 and
for the ’zoo’ dataset for r = 10.) It is interesting that in general the greedy methods,
despite being less complex than the Gurobi methods are competitive. Similar conclu-
sions can be drawn for the incomplete datasets. There are even some cases where the
greedy methods outperform the Gurobi ones - most notably for the ’votes’ dataset, for
all ranks considered, or the ’hepatitis’ dataset for r = 5. For these datasets, all of our
methods outperform the state-of-the-art, with a slight edge for the Gurobi methods
on the complete datasets and a slight edge for the greedy methods on the incomplete
datasets.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 71

3.5.3 Application to topic modeling
In this section, we wish to test BMF’s performance on large datasets. We consider the
NIST tdt2 dataset which contains news stories from 1998 among 30 different topics
[22]. Our input matrix X consists of 9394 documents with 19528 words. Throughout
this section, we are going to work with subsets of the original dataset that we create
as follows: We perform NMF on the original dataset - let us refer to it as X - where
we consider the NMF rank at rNMF , obtain the w most frequent words per topic
from the W factor and the d most frequent documents per topic from the H. We
then work on this subset of X which has only those particular words and documents,
which we will denote as X̂. We later binarize the matrix by assigning all nonzero
values to 1. We will denote this binarized matrix as X̂b. We consider three subsets
according to Table 3.13.

rNMF w d Dimensions of X̂b

small dataset 20 20 50 302× 917
medium dataset 20 150 30 1608× 517

large dataset 30 1300 800 10729× 8200

Table 3.13: The three subsets of X we will consider in this section and the parameters
that we used to create them.

Algorithms used for the larger datasets For the rest of this chapter, other than
our proposed algorithms, we are also comparing with the following algorithms:

• ELBMF [33]: An algorithm which uses proximal gradient with both an l1 and
an l2 regularizing term. We picked this algorithm as it is a recent algorithm
that falls into the category of continuous algorithms for BMF. As we will see
later, it scales very well.

• Methods in [6]. This paper introduces methods that search for undercover
approximations for the BMF problem (also known as "from-below" approxi-
mations). The authors use a MAXSat encoding to solve the optimal Boolean
k-undercover problem. MaxSAT is the optimization version of the Boolean Sat-
isfiability Testing (SAT) problem. We compare with two of the methods in the
paper: FastUndercover, which is a greedy algorithm, as well as optiblock*
which uses FastUndercover as an initialization. Even though these methods are
placing emphasis on avoiding the type of errors that we previously mentioned,
the experiments in [6] show that they are comparable to other state-of-the-art
algorithms that solve BMF.

• ASSO [88]. As a reference we are also comparing with the seminal ASSO
algorithm [88].

72

We picked the methods in [33] and [6] as they are more recent methods and the
approaches differ among each other. We picked ASSO, as it is a seminal work and is
also an algorithm in the combinatorial category.

Summary of results We provide a summary of the results of all the methods that
we tested in Tables 3.14 and 3.15. If an entry is filled with this symbol ’-’, this means
that we could not run the method, because the memory requirements were too great.

What we immediately notice is that the methods in [6] are noticeably behind the
other methods. Among all the methods we compared, ASSO appears, on average,
to perform very well and also to be fast. Our IP based methods seem to generally
perform the best. However, these methods could not be tested on all datasets, and
this was especially the case for MS-Comb-AO and Tree-BMF, which could only be
tested on the small dataset. Our Greedy methods are performing well, being on
average close second algorithms to our IP algorithms. ELBMF performs better than
FastUndercover and Optiblock*, but it generally trails our proposed methods and
ASSO. In the rest of the section, we give more details on the parameters used for our
methods and we also show the topics extracted from the large dataset by using the
GreedyComb algorithm.

Small Medium

Algorithm r = 10 r = 20 r = 10 r = 20

AO-BMF 84.54%
(83s)

78.19%
(125.7s)

94.05%
(224.11s)

90.71%
(363.71s)

Ms-Comb-AO 84.36%
(357.77s)

78.13%
(582.66s) - -

Tree-BMF 84.31%
(780.7s)

78.12%
(610.66s) - -

Greedy-Comb 84.94%
(7.24s)

79.27%
(23.69s)

94.24%
(16.75s)

91.01%
(79.84s)

Greedy-TreeBMF 84.61%
(11.1s)

79.25%
(37.21s)

93.93%
(40.71s)

90.96%
(111.82s)

FastUndercover [6] 98.43%
(2.623s)

97.66%
(4.45s)

98.8%
(17.79s)

98.81%
(11.79s)

OptiBlock* [6] 97.87%
(2248.96s)

96.52%
(5869.15s)

98.52%
(18573s) -

ELBMF [33] 91.5%
(0.28 s)

88.93%
(0.36s)

95.08%
(0.68s)

94.1%
(0.95s)

ASSO [88] 85.43%
(0.64s)

82.26%
(1.21s)

95.43%
(1.05s)

94.11%
(1.91s)

Table 3.14: Best results on the relative errors for all the document subsets and all
the different algorithms considered. In parenthesis, we note the mean time over all
Monte Carlo trials (if multiple trials are performed for a method). In bold is the best
performing method for a given dataset and rank, with the second best performing
method being underlined.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 73

Large

Algorithm r = 10 r = 20

AO-BMF - -
Ms-Comb-AO - -
Tree-BMF - -

Greedy-Comb 98.56%
(989.17s)

98.11%
(7497.2s)

Greedy-TreeBMF 98.68%
(1786s)

98.45%
(5162.74s)

FastUndercover [6] - -
OptiBlock* [6] - -

ELBMF [33] 99.23%
(66.69s)

98.29%
(74.05s)

ASSO [88] 98.66%
(333.41s)

98.1%
(686.3s)

Table 3.15: Best results on the relative errors for all the document subsets and all
the different algorithms considered. In parenthesis, we note the mean time over all
Monte Carlo trials (if multiple trials are performed for a method). In bold is the best
performing method for a given dataset and rank, with the second best performing
method being underlined.

We notice that the relative errors are high. For this reason, we also show tables
that show the percentage of 1s on the original input matrix that are covered by each
algorithm.

Small Medium Large

Algorithm r = 10 r = 20 r = 10 r = 20 r = 10 r = 20

AO-BMF 45.39% 55.85% 19.79% 27.73% - -
Ms-Comb-AO 45.39% 57% - - - -
Tree-BMF 45.39% 57.1% - - - -
Greedy-Comb 43.1% 54.96% 18.66% 25.61% 4.96% 6.22%
Greedy-TreeBMF 46.2% 55.84% 19.82% 26.04% 4.54% 5.29%
FastUndercover [6] 13.25% 22.1% 5.27% 8.7% - -
OptiBlock* [6] 15.48% 25.09% 7.65% - - -
ELBMF [33] 22.21% 25.05% 21% 16.38% 5.46% 5.99%
ASSO [88] 44.86% 55.68% 19.32% 25.69% 4.85% 6.42%

Table 3.16: Best results on the number of 1s covered, for all the document subsets
and all the different algorithms considered. In bold is the best performing method for
a given dataset and rank, with the second best performing method being underlined.

We see that this metric can also provide interesting insights. While the results
mostly follow the previous results, where our metric is the relative error, there are a
few interesting observations. For example, for the large dataset, for r = 10, ELBMF is
the best performing algorithm. Furthermore, we also noticed that for r = 20, ELBMF

74

covers a smaller number of 1s, than for r = 10, which is a strange result. Finally, the
number of 1s covered on the medium and large datasets are small (in accordance to
the high relative errors in the previous tables). However, as we will see in the next
subsection, we can still use BMF to extract meaningful topics from these datasets.

3.5.3.1 Topic mining through our methods

IP methods For AO-BMF we initially consider r = 10. Because AO-BMF gives
different results depending on the initialization, we will be performing 10 runs and
examine the results of the algorithm. The size of the input matrix is 302 × 917. If
we consider Wb and Hb to be the factors obtained from AO-BMF, we cannot extract
topics through observing the factor Wb, since it has solely {0, 1} values and cannot
distinguish words based on their importance. An alternative way to do this extraction
is through the matrix

Wt = Wb ⊙ (X̂H⊤
b). (3.8)

Each topic is made of a set of words in documents in W(:, k)H(k, :). To retrieve the
importance of a word we can count how many times it is used by the documents which
can be computed via the relation (3.8).

We present a Table which shows all the topics retrieved through all the runs and
how many times each topic appears.

For the run with the least relative error, we present at Tables 3.18 and 3.19 the
words which contain the 10 most frequent words per topic. The columns correspond
to topics and the i–th row corresponds to the word with the i–th highest frequency.
Finally, we note that the average relative error, ∥Xb −min(1,WbHb)∥F

∥Xb∥F
, is 84.54%.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 75

Topic #times the topic was retrieved
1998 US-Iraq crisis 10

Clinton - Lewinsky scandal 10
Israeli - Palestinian conflict 10

1998 visit of the pope to Cuba 10
1998 winter Olympics 10

1998 Southeast Asian economic crisis 10
Tobacco master settlement agreement 10

1998 Indian elections 8
1998 IMF help to Indonesia 6

1998 Indian - Pakistani nuclear tests 3
1998 Super Bowl 3

Asian stock markets 3
Ted Kaczynski trial 2

Indiscernible topic #1 2
Indiscernible topic #2 1

Table 3.17: List of topics retrieved and number of times each topic appears among
all the 10 runs.

Indian
elections

Winter
Olympics

Asian stock
markets

Indian - Pakistani
nuclear tests

Southeast Asian
economic crisis

india nagano market india crisis
party olympic percent nuclear economic
hindu olympics stock pakistan economy
indias games asian tests financial

government japan prices minister asia
congress winter investors states international

delhi team asia prime government
parliament gold economy united asian

election medal end indias market
political win average test percent

Table 3.18: Table for topics 1 - 5 after using AO-BMF.

76

Tobacco master
settlement
agreement

Israel
Palestine
conflict

Clinton - Lewinsky
scandal

Visit of the
pope to Cuba

1998 US
Iraq crisis

companies israel president cuba iraq
tobacco israeli clinton pope united
industry netanyahu house cuban saddam
smoking palestinian white john weapons
congress arafat washington paul iraqi

legislation bank lewinsky visit states
senate minister monica havana gulf

washington palestinians counsel castro military
cigarette prime independent fidel nations

government west case popes officials

Table 3.19: Table for topics 6 - 10 after using AO-BMF.

We now wish to explore how MS-Comb-AO performs under this task. We consider
the matrix X̂b from the run that gave us the previous two Tables and apply our
combining algorithm. We set a timelimit of T = 60 seconds, and then set the number
of solutions that MS-Comb-AO will consider to 10. The best relative error from all
AO-BMF runs was 84.54%, and MS-Comb-AO improves it to 84.36%. The average
time for the BMF runs is 13.2 seconds, while the average error was 85.45%. The
words retrieved for each topic are presented in Tables 3.20 and 3.21.

As a reference, we are also comparing with the performance of an NMF algorithm,
implemented according to [28] and [1]. The average relative error over 50 experiments
is 71.09%. It is lower than the corresponding error of our BMF methods, however it
should be noted that the factors computed from NMF are much more expressive.
We notice that the 1998 winter Olympics topic is switched with an indiscernible topic
related to the presidency of Bill Clinton. Furthermore the other retrieved topics are
the same, with some minor changes in the words retrieved.

Indian
elections

Indiscernible
topic

Southeast Asian
economic crisis

Indian - Pakistani
nuclear tests

Asian stock
markets

india president economic india market
party clinton crisis nuclear percent
hindu states economy pakistan stock
indias washington financial tests asian

congress united government minister prices
government end international indias investors
parliament officials billion states economy

delhi american south test asia
election house united united average
political political banks weapons economic

Table 3.20: Table for topics 1 - 5 after using MS-Comb-AO.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 77

Tobacco master
settlement
agreement

Israel
Palestine
conflict

Clinton - Lewinsky
scandal

Visit of the
pope to Cuba

1998 US
Iraq crisis

companies israel president cuba iraq
tobacco israeli clinton pope united
industry netanyahu house cuban saddam
smoking palestinian lewinsky john iraqi
congress arafat washington paul weapons

legislation bank white visit states
senate minister monica havana gulf

washington palestinians counsel castro military
cigarette prime independent fidel nations

settlement west starr popes officials

Table 3.21: Table for topics 6 - 10 after using MS-Comb-AO.

Finally, we also tested Tree BMF. For r = 10, we used the following parameters:
depth = 2, number of solutions for the leaf nodes are set to 10, the number of children
nodes are set to 3, the upper time limit was set to T = 1000 seconds. Furthermore,
we choose the alternating initialization scheme when we solve the AO-BMF problems
in the MS-Comb-AO nodes. The topics found are the same, with minor changes in
the top words retrieved. The relative error was improved further to 84.31% and the
algorithm finished after 780.696 seconds.

Greedy methods We are testing the Greedy-Comb on the following setting: Due
to the scalability of the method, we will be using the ’large’ subset. When we run
Greedy-Comb, to further showcase the scalability of this method in comparison to
the previous ones, we will be considering r = 20. We will also choose among 25 initial
factorizations.

Modifying Greedy-Comb to enhance the diversity of solutions In several
initial experiments that we ran, we noticed that several topics may be mined multiple
times (that is, most words belonging to two columns of W are the same). For this
reason, in order to get more diverse topics, we introduce an additional procedure,
which is performed as an additional step at the end of the Greedy-Comb algorithm.
Its steps are the following:

After getting an initial solution (W,H), we construct H⊤H. This matrix repre-
sents the correlation among the clusters retrieved for the topics. More specifically,
(H⊤H)i,j is a measure of how similar the clusters i and j are (i.e., the number of
common documents between these two clusters). When i = j, then this product rep-
resents the amount of documents that are assigned to cluster i. Ideally, we want the
values in the diagonal to be non-zero. If there is a diagonal element equal to zero,
this would mean that we extracted a topic for which there are no documents that
correspond to it. Furthermore, we also desire for them to not have values that are
close to zero, we would like to extract topics (i.e., clusters) for which there are many

78

documents about it in the dataset. Finally, we would like for non-diagonal values to
be as close to zero as possible. This would mean that the topics extracted are different
from each other. To this end, we propose the following procedure:

• For H⊤H, we initially check the diagonal elements. Through trial and error,
the threshold that we consider acceptable for a diagonal value is 10, that is,
if any diagonal element is less than 10, we return its index idx and through
the mapping h(idx), we remove it as a possible solution from the collection of
solutions U. We pick a new solution through a modification of algorithm 14
where instead of finding a completely new h, we only substitute the index that
was removed.

• If all diagonal elements are greater or equal to 10, we move to the next step. If
we find a non-diagonal element of (H⊤H)i,j such that it is ’close’ to (H⊤H)i,i
we also return the corresponding index and remove it from U. This is because
that would mean that the clusters i and j have a closely related topic and this is

something that we want to avoid. Our measure of ’close’ is the ratio (H⊤H)i,i

(H⊤H)i,j
.

As before, through trial and error, the threshold we consider is 8, that is, if the
ratio is less or equal to 8, we remove the solution from the collection and then
find a substitute.

This procedure continues until either: The conditions above are satisfied, or the
number of remaining rank-1 factors in the collection is equal to r, in which case we
return the solution. This version of algorithm 14 has the following distinctions:

• We only change one index from U.

• As soon as we find another rank-1 factor that reduces error, we immediately
terminate the algorithm and return the new index.

The topics mined from our experiment in Tables 3.22-3.24. Because we are handling
a larger dataset and we are using a higher rank than in the previous subsection, there
will be topics mined that were not originally retrieved in Table 3.17.

We can see that the method succeeds in retrieving unique topics. The relative
error is at 97.02% and the method finished after 23884.8 seconds, a little less than
6 hours and 40 minutes. While this relative error can be considered high, it should
be noted that the original dataset is unstructured and sparse. Even at this level of
relative error we can still mine meaningful topics.

One thing we would like to note is that the introduction of these thresholds for
H⊤H and our aim for discrete topics mined may give us a solution that is not as good
in terms of relative error. In cases where we removed these thresholds or made them
much less restrictive, the relative error was smaller. This is examined in more detail
in the next subsection.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 79

C
linton

Lew
insky

scandal

Israeli
P
alestinian
conflict

T
ed

K
aczynski
trial

Indian
P
akistani
nuclear
tests

1998
Superbow

l

Southeast
A

sian
econ.

crisis

1998
U

S
Iraq

crisis

’president’
’israel’

’kaczynski’
’nuclear’

’denver’
’econom

ic’
’iraq’

’lew
insky’

’netanyahu’
’law

yers’
’india’

’packers’
’percent’

’w
eapons’

’clinton’
’israeli’

’defense’
’pakistan’

’super’
’crisis’

’united’
’house’

’palestinian’
’trial’

’tests’
’gam

e’
’governm

ent’
’iraqi’

’w
hite’

’peace’
’judge’

’indias’
’bow

l’
’indonesia’

’inspectors’
’starr’

’arafat’
’kaczynskis’

’test’
’broncos’

’asian’
’annan’

’law
yers’

’palestinians’
’case’

’w
eapons’

’green’
’econom

y’
’council’

’jones’
’talks’

’prosecutors’
’indian’

’bay’
’billion’

’baghdad’
’case’

’m
inister’

’burrell’
’united’

’elw
ay’

’financial’
’saddam

’
’sexual’

’w
est’

’court’
’m

inister’
’yards’

’asia’
’security’

Table 3.22: Table for topics 1 - 7 after using Greedy-Comb.

80

Jo
ne

sb
or

o
sc

ho
ol

sh
oo

ti
ng

T
ob

ac
co

m
as

te
r

se
tt

le
m

en
t

ag
re

em
en

t

W
in

te
r

O
ly

m
pi

c
ga

m
es

E
as

in
g

of
U

S
em

ba
rg

o
of

C
ub

a

C
ou

rt
m

ar
ti

al
of

G
en

e
M

cK
in

ne
y

19
98

C
av

al
es

e
ca

bl
e

ca
r

cr
as

h

19
98

N
B

A
fin

al
s

’s
ch

oo
l’

’t
ob

ac
co

’
’o

ly
m

pi
c’

’c
ub

a’
’m

ck
in

ne
y’

’it
al

ia
n’

’g
am

e’
’s

tu
de

nt
s’

’in
du

st
ry

’
’n

ag
an

o’
’c

ub
an

’
’s

er
ge

an
t’

’it
al

y’
’b

ul
ls

’
’b

oy
s’

’b
ill

’
’o

ly
m

pi
cs

’
’c

as
tr

o’
’s

ex
ua

l’
’m

ar
in

e’
’jo

rd
an

’
’jo

ne
sb

or
o’

’c
om

pa
ni

es
’

’g
am

es
’

’e
m

ba
rg

o’
’m

aj
or

’
’c

re
w

’
’ja

zz
’

’m
id

dl
e’

’le
gi

sl
at

io
n’

’g
ol

d’
’a

m
er

ic
an

’
’a

rm
y’

’p
la

ne
’

’m
al

on
e’

’t
ea

ch
er

’
’s

m
ok

in
g’

’m
ed

al
’

’v
is

it
’

’c
ou

rt
’

’c
ab

le
’

’c
hi

ca
go

’
’m

it
ch

el
l’

’c
on

gr
es

s’
’t

ea
m

’
’g

ov
er

nm
en

t’
’g

en
e’

’m
ili

ta
ry

’
’p

oi
nt

s’
’s

ho
ot

in
g’

’s
en

at
e’

’w
on

’
’c

lin
to

n’
’w

om
en

’
’a

cc
id

en
t’

’p
ip

pe
n’

’fi
re

’
’t

ax
’

’ja
pa

n’
’fl

ig
ht

s’
’m

ar
ti

al
’

’fl
yi

ng
’

’le
ft

’
’a

rk
an

sa
s’

’c
ig

ar
et

te
’

’w
in

te
r’

’h
um

an
it

ar
ia

n’
’m

is
co

nd
uc

t’
’fe

et
’

’t
ea

m
’

Table 3.23: Table for topics 8 - 14 after using Greedy-Comb.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 81

D
eath

of
M

LK
’s

assassin

V
isit

of
the

pope
to

C
uba

E
xecution

of
a

U
S

convict
Law

suit
against

O
prah

W
infrey

Indian
elections

A
lgerian

civilw
ar

’ray’
’cuba’

’death’
’w

infrey’
’party’

’algeria’
’king’

’pope’
’tucker’

’texas’
’india’

’governm
ent’

’jam
es’

’cuban’
’penalty’

’oprah’
’governm

ent’
’algerian’

’earl’
’castro’

’texas’
’show

’
’hindu’

’islam
ic’

’m
artin’

’visit’
’execution’

’cattle’
’congress’

’algiers’
’luther’

’church’
’executed’

’beef’
’bjp’

’killed’
’assassination’

’john’
’row

’
’disease’

’election’
’violence’

’kings’
’paul’

’clem
ency’

’cow
’

’seats’
’m

ilitants’
’fam

ily’
’havana’

’w
om

an’
’am

arillo’
’indias’

’arm
ed’

’rays’
’popes’

’case’
’m

ad’
’parliam

ent’
’m

ilitary’

Table 3.24: Table for topics 15 - 20 after using Greedy-Comb.

3.5.3.2 Performance of other competing methods
In this section, we are testing the performance of other methods in the literature. Our
measure of comparison is the relative error. We are comparing with recent methods
that use different approaches. As a reference point, we also compare with the ASSO
method of [88].

ELBMF [33]. We initially test the method in [33]. The method has many param-
eters that are assigned by the user. The parameters used are the following: l1_reg
= l2_reg = 0.01, maxiter = 100, tol = 10−10, beta = 10−4 and regularization rate
λ = 1.0133. For the remainder of this paper, we consider that for all reporting of the
ELBMF algorithm, the number of Monte Carlo trials is 15.

82

• For the small dataset, for r = 10, the best relative error was 91.5%, the mean
time is 0.28 seconds and the median time is 0.26 seconds. For r = 20, the best
relative error was 88.93%, the mean time is 0.36 seconds and the median time
is 0.34 seconds.

• For the medium dataset, for r = 10, the best relative error was 95.08%, the
mean time is 0.68 seconds and the median time is 0.66 seconds. For r = 20, the
best relative error was 94.1%, the mean time is 0.952 seconds and the median
time is 0.945 seconds.

• For the large dataset, for r = 10, the best relative error was 99.23%. Further-
more, the average time needed for a trial to finish is at 66.69 seconds, while the
median time is at 66.45 seconds. For r = 20, the best relative error that this
method gave us was 98.29%. Furthermore, the average time needed for a trial
to finish is at 74.05 seconds, while the median time is at 73.35 seconds.

Greedy-Comb and Greedy-TreeBMF. In the previous subsection when we
tested the performance of Greedy-Comb, we mentioned that we made changes to the
algorithms in order to retrieve meaningful topics. We also noted that this can lead to
a suboptimal solution in terms of relative error. We will now test Greedy-Comb and
Greedy-TreeBMF on all document datasets considered, without these changes, and
see whether the relative reconstruction error can be improved.

• For the small dataset, for Greedy-Comb, when considering r = 10, it finished
after 7.24 seconds with a relative error of 84.94%. For r = 20, it finished after
23.69 seconds with a relative error of 79.27%. For Greedy-TreeBMF, for r = 10,
we are setting a soft limit of 8 seconds. The results were a relative error of
84.61% and it finished after 11.1 seconds. For r = 20, we are setting a soft limit
of 24 seconds. The results were a relative error of 79.25% and it finished after
37.21 seconds.

• For the medium dataset, as before, we gather 10 solutions when using Greedy-
Comb. For r = 10, the method finishes after 16.75 seconds with a relative error
of 94.24%, while for r = 20, the method finishes after 79.84 seconds with a
relative error of 91.01%. For Greedy-TreeBMF, for r = 10, we are setting a
limit of 30 seconds. The relative error was at 93.93% and finished after 40.71
seconds. For r = 20, we are setting a limit of 80 seconds. The relative error was
at 90.96% and finished after 111.82 seconds.

• For the large dataset, for Greedy-Comb, we gather 10 solutions for r = 10 and
15 for r = 20. For the former rank, the method finished after 989.165 seconds
(approximately 16 and a half minutes) with a relative error of 98.56%. For the
latter rank, the method finished after 7497.2 seconds (approximately 2 hours
and 4 minutes and 57 seconds) with a relative error of 98.11%.
For Greedy-TreeBMF, when r = 10 we set the timelimit to 1000 seconds. The
algorithm finished after 1786 seconds (a little less than half an hour) with a
relative error of 98.68%. For r = 20, the timelimit of the Greedy-TreeBMF

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 83

algorithm was set to 3000 seconds. It finished after 5162.74 seconds (around 1
hour and 26 minutes) with a relative error of 98.45%. We notice that Greedy-
TreeBMF did not perform as well as Greedy-Comb. A reason for this could be
that it needs more solutions and more time to provide a better solution.

We are noticing that for the last two smaller datasets, Greedy-TreeBMF performs
better than Greedy-Comb, as it has more time to explore solutions and the size of the
datasets is not prohibitively large. Furthermore, while the terminating condition for
the gathering step for Greedy-Comb is different, in comparison to the previous run in
section 3.5.3.1, for a shorter run time (6796.41 seconds vs. 23884.8 seconds), a better
relative error was achieved (96.34% vs. 97.02%).

Methods in [6]. We move on to the algorithms from [6].

• For the small dataset, the FastUndercover method, for r = 10, the method
finished after 2.623 seconds and gave a relative error of 98.43%. For r = 20,
we got an error of 97.66% and the method finished after 4.45 seconds. For
Optiblock*, for r = 10 we got a relative error of 97.87% and it finished after 37
minutes and 28.96 seconds. For r = 20, we got a relative error of 96.52% and
the method finished after 1 hour, 34 minutes and 49.15 seconds.

• For the medium dataset, the FastUndercover method, for r = 10, got a relative
error of 98.8% and the method finished after 17.79 seconds. For r = 20, we got
a relative error of 98.81%. Interestingly, for a higher rank, the method finished
quicker, at 11.79 seconds. For Optiblock* we could only test for r = 10. The
relative error was 98.57% and finished after 5 hours 9 minutes and 33 seconds.
For r = 20, the method needed a very long time and did not finish after two
days of running. As a result, we terminated it before it finished.

• Finally, we could not test the two methods on the large dataset. The method
requirements were too large for our machine to handle.

ASSO [88]. Finally, we examine the performance of ASSO. The algorithm requires
a threshold parameter to search for associations among columns in the input matrix.
Through trial and error, we found a good threshold parameter for each of the datasets
considered.

• For the small dataset, we considered the threshold equal to 0.4. For r = 10,
it finished after 0.641 seconds, with a relative error of 85.43%. For r = 20, it
finished after 1.214 seconds, with a relative error of 82.26%.

• For the medium dataset, we considered the threshold equal to 0.3. For r = 10,
it finished after 1.045 seconds, with a relative error of 94.64%. For r = 20, it
finished after 1.911 seconds, with a relative error of 93.04%.

• For the large dataset, we considered the threshold equal to 0.3. For r = 10, it
finished after 333.406 seconds, with a relative error of 98.66%. For r = 20, it
finished after 686.297 seconds, with a relative error of 98.10%.

84

We can see in Tables 3.14 and 3.15 that ASSO provides competitive results and it is
one of the fastest algorithms tested. In particular, it is the best performing method
among all those considered in this case, with Greedy-TreeBMF being very close.

3.5.4 Application on facial images
Summary of results We show a summary of the results of methods in Table 3.25.
MS-Comb-AO, Tree BMF and the methods in [6] will not be in the Table since due
to the memory and computational demands of the methods.

Method Best result
for r = 10

Best result
for r = 20

AO-BMF 59.61%
(1318.86s)

54.74%
(4233.59s)

Greedy-Comb 60.2%
(47.83s)

56.75%
(222.49s)

Greedy-TreeBMF 60.18%
(55.74s)

56.65%
(159.96s)

ELBMF [33] 74.66%
(7.7s)

69.66%
(19.36s)

ASSO [88] 67.19%
(23.45s)

65.62%
(36.55s)

Table 3.25: Table that compares the best relative error of most of the methods tested
for the binarized CBCL dataset. In parenthesis, we note the mean time over all Monte
Carlo trials. In bold is the best performing method for a given dataset and rank, with
the second best performing method being underlined.

We see that our AO-BMF method generally performs the best. Our greedy meth-
ods are then a close second, with Greedy-TreeBMF being slightly better than Greedy-
Comb. It is also worth noting that AO-BMF is considerably slower than the other
methods. For r = 10, a single ao-iteration is comparable to the whole runtime of the
other methods and for r = 20, a single ao-iteration is slower than the whole runtime
of the other algorithms. ELBMF and ASSO trail greatly to our proposed methods.

3.5.4.1 Gurobi-based methods

As in [63], we apply our algorithms to the CBCL facial image data set. Each column
of the data matrix X ∈ R361×2429 contains a vectorized facial image of size 19 × 19,
and is not binary but satisfies X(i, j) ∈ [0, 1] for all (i, j). Our AO-BMF algorithm
can be applied to any input matrix X, even if it is not binary. We use the NMF
initialization scheme for AO-BMF with r = 20 only, since it provides better results.
We report the average time per AO iteration over 5 trials and the best relative error
∥X−min(1,WH)∥F

∥X∥F
among them. The maximum number of AO iterations is set to 15.

The best relative error achieved is 55.94% and the average ao iteration lasted 244.309

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 85

seconds. To note the performance boost provided by using Julia, we repeated the
experiment with the NMF initialization using the MATLAB version of [63]. The av-
erage time per ao iteration is 516.806 seconds. We see that Julia provides a significant
speedup.

Not all of the other methods that we are going to be testing can handle real valued
data (our greedy methods are such methods). For this reason, for the remainder of
this section, we will be utilizing a binarized version of the dataset. We binarize it
by using the mean value of each image as a threshold (if the pixel is above black,
otherwise it is white). We are testing for both r = 10 and r = 20. The initialization
scheme that we use is only through the use of NMF, since we have noticed that this
yields better results. For r = 10, the best relative error that we get is 59.61% and the
average AO iteration is at 98.84 seconds. For r = 20, the best relative error that we
get is 54.74% and the average AO iteration is at 474.42 seconds. Figure 3.4 displays
the meaningful binary facial features extracted by AO-BMF as the columns of W
from the trial with the best relative error approximation from the binarized CBCL
dataset.

Figure 3.4: Facial features extracted by AO-BMF on the CBCL data set for r = 20.

We also tried applying MS-Comb-AO. For r = 10, due to the memory demands of
the method, we were not able to gather more than two solutions. In addition, it was
not able to improve the relative error of the individual AO-BMF functions used. We
observed the same when we tried to use Tree BMF. Similarly, we had to constrain
the number of solutions of MS-Comb-AO. In both cases when we set the depth of the
tree to 1 or 2, we could not observe improvements on the initial relative errors by the
AO-BMF methods. As these methods are heuristics, there is only a guarantee that
they cannot worsen the initial result - there is no certainty on strictly improving.

Under the same constraints we tried to apply the MS-Comb-AO method for r = 20,
however due to high memory demands for the combining step, it could not run on
our system. As a result, we can also not test the Tree BMF method.

86

3.5.4.2 Greedy-Comb

We move on to our proposed greedy methods. We start with the Greedy-Comb
method. The matrix obtained is the one that will be factorised, which we will refer to
as X̂. To demonstrate the scalability of the method, we will test for both r = 10 and
r = 20. For r = 10, we gathered 5 solutions. The method finished after 47.83 seconds
and gave back a relative error of 36.24%. For r = 20, we gathered 15 solutions. The
method finished after 222.487 seconds and had a relative error of 32.2%. Finally, we
show the facial features extracted in Figure 3.5.

3.5.4.3 Greedy-TreeBMF

We now report on the results of our Greedy-TreeBMF method, again for both r = 10
and r = 20. We are again using X̂ as input. For r = 10, we are setting a maximum
timelimit of 50 seconds and solve 5 Greedy-Comb problems that each have a timelimit
of 10 seconds. The method finished after 55.74 seconds with a relative error of 36.22%.
For r = 20, we are setting a maximum timelimit of 150 seconds and solve 5 Greedy-
Comb problems that each have a timelimit of 30 seconds. The method finished after
159.955 seconds with a relative error of 32.09%. Finally, we show the extracted facial
features in Figure 3.6.
For both greedy methods, we can see that the scalability improvement is substantial in
comparison to the Gurobi-based AO-BMF. Furthermore, the facial features extracted
are sensible.

Figure 3.5: Facial features extracted by Greedy-Comb on the binarized CBCL data
set X̂.

Chapter 3. Novel Algorithms for Boolean Matrix Factorization 87

Figure 3.6: Facial features extracted by Greedy-TreeBMF on the binarized CBCL
data set X̂.

3.5.4.4 Performance from competing methods

Just like with the document datasets that we tested in the previous subsection we will
also be testing other methods. We initially test the ELBMF method in [33]. We are
using the binarized version of the CBCL input just like in the previous two subsections.
The parameters used are the following: l1_reg = l2_reg = 0.01, maxiter = 2000,
tol = 10−10, r = 10, beta = 10−4. The regularization rate for the l2 regularization
parameter is at λ = 1.0033.
For r = 10, the best relative error that this method gave us was 55.74%. The average
time over the 15 trials was 7.7 seconds, while the median time was 7.81 seconds.
For r = 20, we initially tried with the same parameters as before. However we were
getting worse results. Over 15 trials, the best result had a relative error of 61.51%. We
changed the l1 and l2 regularization parameters to 0.05, as well as the regularization
rate to 1.0133. This leads to an improvement in the performance of the algorithm.
Over 15 trials, the average time to compute a solution is 19.36 seconds and the best
solution has a relative error of 48.52%.

For ASSO, we set the threshold to 0.7. For r = 10, it achieved a relative error
of 67.19%, after 23.45 seconds. For r = 20, the error was reduced to 65.62% and
the algorithm finished after 36.55 seconds. We see that ASSO performs better than
ELBMF but trails all our proposed methods on this dataset.

Finally, we also tried running the method in [6], for r = 10. Initially, we tested
solely the fast undercover algorithm. Unfortunately, over the course of 2 days,
the method could not finish. As a result, we could not test the more demanding, in
terms of time and memory, optiblock algorithm of the paper, neither can we test for

88

r = 20.
We conclude that our methods can find sensible facial features for the CBCL

dataset and furthermore, our methods perform well in terms of relative error versus
the state-of-the-art.

3.6 Conclusion
In this Chapter, we have designed an alternating optimization (AO) strategy to tackle
Boolean matrix factorization (BMF) using interger programming (IP). We have also
shown how to combine several solutions in an optimal way, using IP as well. We
showed how these two strategies are able to outperform the state of the art on 4 real-
world medium-scale data sets. Furthermore, we also proposed new greedy methods
that are competitive despite their simplicity. Our experiments on various real datasets
and with also various other BMF algorithms display the efficiency of our methods
versus the state of the art. Our tests in topic modelling show that BMF can be
applied in this task and offer meaningful results. Our BMF methods also work well
in the facial reconstruction task, as they can also compute interesting facial features.

We thank Sebastian Miron for sending us his BMF code [21], and Sebastian
Dalleiger for providing us with good parameters for his BMF algorithm [33].

Chapter 4

Boolean Matrix
Tri-Factorization

Matrix tri-factorizations (MTFs) aim to decompose an input matrix X into the prod-
uct of three factor matrices, instead of only two as in standard matrix factorization
(MF). In contrast to MF, MTF is able to cluster both rows and columns of X while
quantifying the relationship among these two groups of clusters. In this chapter
we focus on Boolean matrix tri-factorization (BMTF) that extends BMF to the tri-
factorization framework. We first show an identifiability result for BMTF, namely, we
show that the factors are unique under certain sparsity conditions. Then we propose
an algorithm to compute the factors of BMTF, and perform numerical experiments
to show how it performs on synthetic and real data. The content of this chapter is
mainly from:

• C. Kolomvakis, A. Vandaele and N. Gillis, "Boolean Matrix Tri-Factorization," -
2025 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). [64]

4.1 Introduction
As an extension to matrix factorizations, matrix tri-factorization (MTF) models aim
to decompose the input matrix into three factors. We use the Frobenius norm to
quantify the error of the approximation.

Definition 4.1 (MTF) Given a matrix X ∈ Rm×n and factorization ranks (r1, r2),
MTF aims to find matrices W ∈ Rm×r1 , S ∈ Rr1×r2 and H ∈ Rr2×n that solve

min
W∈Rm×r1 ,S∈Rr1×r2 ,H∈Rr2×n

∥X−WSH∥2F .

Nonnegative MTF (NMTF) requires that the factors, W, S and H, are component-
wise nonnegative. This leads to an easy interpretation of NMTF: the columns of W

89

90

(resp. rows of H) provide a soft clustering of the rows (resp. columns) of X into r1
(resp. r2) clusters: Wik indicates the membership value of the ith row of X in the
kth row cluster, Hℓj indicates the membership value of the jth column of X in the
ℓth column cluster, while Skℓ measures the relation between the kth row cluster and
the ℓth column cluster. This is an advantage of such a formulation where interaction
between different clusters can be incorporated in the model.

A first variant of NMTF was explored in [36], adding orthogonality constraints,
W⊤W = Ir1 and H⊤H = Ir2 . Orthogonality imposes that the clusters of rows and
columns are disjoint since W ≥ 0 and W⊤W = Ir1 implies that W has at most
one non-zero entry per row, and similarly for the columns of H. They proposed
multiplicative update algorithms and applied them for document clustering. There
are numerous other works exploring NMTF in other contexts; see, e.g., [27, 32, 92,
123] and the references therein.

In this Chapter we introduce Boolean matrix tri-factorization (BMTF) which, to
the best of our knowledge, had not been explored before our contribution in [64]. A
closely related factorization was proposed in [86] where W and H were restricted to be
columns and rows of X, resp., which did not consider identifiability nor interpretability
aspects which are a central focus of our work. In Section 4.2, we recall the definition
of BMF and formally define BMTF. In Section 4.3, we discuss the identifiability
of BMTF and prove identifiability with orthogonality constraints. In Section 4.4, we
describe our proposed block coordinate descent algorithm for BMTF. We also provide
a refinement procedure after updating the factors W and H to generate sparser and
more expressive solutions. In Section 4.5, we perform numerical experiments to assess
the performance of our proposed algorithm on synthetic and real datasets. Finally,
in Section 4.6 we conclude the paper with some observations and future research
directions.

4.2 Boolean matrix tri-factorization
A two-factor model as BMF decomposes the data matrix X as the sum of r commu-
nities, W(:, k)H(k, :) for k = 1, 2, . . . , r, where a community is made of a cluster of
rows and a cluster of columns. The kth cluster of rows, defined as {i |W(i, k) = 1},
can only interact with the kth cluster of columns, {j | H(k, j) = 1}, and the number
of cluster of rows and columns must be the same. A three-factorization model allows
for any interactions between these clusters, and for a different number of clusters in
both dimensions. Let us define BMTF formally.

Definition 4.2 (BMTF) Given a Boolean matrix X ∈ {0, 1}m×n and factoriza-
tion ranks (r1, r2), BMTF aims to find W ∈ {0, 1}m×r1 , S ∈ {0, 1}r1×r2 and H ∈
{0, 1}r2×n that minimize ∥X−W ◦ S ◦H∥2F .

BMTF is able to detect

• r1 clusters1 for the rows of X, defined as {i |W(i, k) = 1} for k = 1, 2, . . . , r1,
1Note that the clusters do not need to be disjoint.

Chapter 4. Boolean Matrix Tri-Factorization 91

• r2 clusters for the columns of X, defined as {j | H(ℓ, j) = 1} for ℓ = 1, 2, . . . , r2,

• the interactions between these clusters via the matrix S
since X ≈

∑r1

k=1

∑r2

ℓ=1
W(:, k)S(k, ℓ)H(ℓ, :).

For example, let X be a data set where the rows correspond to animals and the
columns represent characteristics (e.g., ‘has fins’, ‘flies’, ‘has 4 legs’), while X(i, j) = 1
if animal i has the characteristic j. BMTF can not only find clusters of animals (in
W) and characteristics (in H), but also it can link the two sets of clusters through the
factor S; e.g., a cluster of fishes to a cluster of their characteristics such as ‘aquatic’,
and ‘has fins’; see Section 4.5.2 for a real-world example. In the next two sections, we
discuss the identifiability of BMTF, and then we propose an algorithm to compute
solutions to BMTF.

4.3 Identifiability via Orthogonality
A BMTF, X=W◦S◦H, is identifiable/unique if any other BMTF of X can only be
obtained via permutations, that is, for any other BMTF X=W′◦S′◦H′ of the same
size, we have W′=W(:, π1), S′=S(π1, π2), and H′=H(π2, :), for some permutations
π1 of {1, 2, . . . , r1} and π2 of {1, 2, . . . , r2}.

It is crucial to note that when r1 ̸= r2, plain BMTF is never identifiable (that
is, BMTF without additional constraints). Assume w.l.o.g. that r1 > r2 and let
X = W ◦ S ◦ H be a BMTF. Let us show that we can always construct another
BMTF of X which cannot be obtained as a permutation of W ◦S ◦H. There are two
cases:

• If a column of W is equal to zero, say W(:, k) = 0, then the corresponding row
of S, S(k, :), can take any value and the BMTF is not identifiable.

• Otherwise, another BMTF is given by

W′ = [W ◦ S,0m×(r1−r2)],S
′ = [Ir2 ;0(r1−r2)×r2],H

′ = H,

where 0a×b is the a-by-b all-zero matrix, so that W′ has r1 − r2 zero columns.

Another way to make this observation is to realize that BMTF is an overparametrized
BMF, since W ◦ S ◦H = (W ◦ S) ◦H = W ◦ (S ◦H). Hence, to be able to provide
additional insight on the data set and to be identifiable, BMTF requires additional
constraints. For example, a natural goal would be to look for the sparsest W and
H to identify the smallest clusters that explain the data. Let us prove that BMTF
is identifiable under the conditions that the clusters are disjoint, or equivalently that
the columns of W (resp. rows of H) are orthogonal. Before proving this result, let us
provide a definition and a lemma.

Definition 4.3 (Orthogonal BMTF) Orthogonal BMTF is the BMTF problem with
the additional constraints that W(:, i)⊤W(:, j) = 0 for all i ̸= j and H(k, :)H(p, :)⊤ = 0
for all k ̸= p.

92

Lemma 4.1 Let S ∈ {0, 1}r1×r2 have distinct non-zero rows and columns. Then
the unique exact orthogonal BMTF of S with ranks (r1, r2) is Ir1 ◦ S ◦ Ir2 , up to
permutations.

Proof 4.1 Let S=W◦S◦H be an orthogonal BMTF of S. Because S has no zero
columns, and H has at most a single non-zero entry per column (due to orthogonality),
each column of S is equal to a column of W◦S′. Moreover, since the columns of S
are distinct and non-zero, and W◦S′ has r2 columns, H must be a permutation of
the identity. Using the same argument on the rows, we conclude that W must be a
permutation of the identity.

Theorem 4.1 Let X = W ◦S ◦H be an orthogonal BMTF with ranks (r1, r2) where
each column of W and H⊤ have a least one non-zero element (no cluster is empty),
and S ∈ {0, 1}r1×r2 has distinct non-zero rows and columns. Then X has a unique
orthogonal BMTF.

Proof 4.2 The uniqueness of W and H follows from the uniqueness of ONMF [46,
Th 4.40, p.136]. Let us recall this result: if X = AB where B ≥ 0 has orthogonal
rows, and A has non-multiple columns (that is, A(:, i) ̸= αA(:, j) for any α ∈ R,
for i ̸= j), then (A,B) is an identifiable ONMF. Since W and H⊤ has orthogonal
columns, we have W ◦ S ◦ H = WSH. Applying the uniqueness result of ONMF
to (WS)H and W(SH), we have that H is unique if WS has non-multiple columns
and W is unique if SH has non-multiple rows. Since W has no zero column and is
binary, W contains the identity matrix, hence the matrix S appears as a submatrix
of WS. Since S has distinct columns, WS also has. The same argument applies to
SH.

Finally, since W and H are unique and contain the identity as a submatrix, S
has to be unique since Ir1SIr2 is the only orthogonal BMTF of S; see Lemma 4.1.

4.4 Block-coordinate descent for BMTF
In this section, we propose a block-coordinate descent (BCD) method to solve BMTF.
It relies on our previous work that proposed a BCD scheme for BMF, as in chapter 3.

4.4.1 Introduction
The scheme is a standard approach for matrix and tensor factorizations: optimize over
each factor individually, in our case W, S and then H, while the others are fixed.
To optimize W, we need to solve m independent Boolean least squares (BoolLS)
problem:

min
W(i,:)∈{0,1}r1

∥X(i, :)−W(i, :)(S ◦H)∥22. (4.1)

Each subproblem has only r1 binary variables and can be solved relatively fast using
an integer programming software. For H, we need to solve n BoolLS in r2 variables,
one for each column of H. These problems are solved using Gurobi [53] but, in the
worst case, the complexity for updating both factors once is O(m2r1 +n2r2) (by brute

Chapter 4. Boolean Matrix Tri-Factorization 93

force). The update of S needs to be handled slightly differently. Using the property
vec(ABC) = (C⊤⊗A) vec(B), where ⊗ is the Kronecker product and vec vectorizes
a matrix as a vector column wise, the problem in S can written as a BoolLS in r1r2
variables:

min
S∈{0,1}r1×r2

∥ vec(X)−min
(
1, (H⊤⊗W) vec(S)

)
∥22, (4.2)

with worst-case complexity O(2r1r2). We then reshape the retrieved vector to obtain
S.

4.4.2 Imposing sparsity
As explained in Section 4.3, BMTF is in general not identifiable unless additional con-
straints are imposed. We consider sparsity constraints, and generate sparse solutions
by adding explicit constraints on the rows of W (resp. columns of H) when solving
(4.1): for all i,

∑r1

k=1
W(i, k) ≤ KW , where 1 ≤ KW ≤ r1 is a sparsity parameter,

and similarly for H. For example, setting KW=1 corresponds to the orthogonality
constraint discussed in Section 4.3: each row of X belongs to at most one cluster.
Sparsity is a natural constraint as it corresponds to identifying the smallest clusters
that explain the data.

4.4.3 Generating sparser and more expressive solutions
When r1 > r2, we have observed that BCD often generates W’s with zero columns,
because of the identifiability issues discussed in Section 4.3. In order to generate
sparser solutions and avoid rank-deficient ones, we resort to a refinement procedure
that will generate sparser and more expressive solutions. This procedure is inspired by
[47], and has been used recently in [50] for tensor factorizations. Let W∈{0, 1}m×r1 ,
and assume that the support of W(:, i) (that is, the set of indices corresponding to
non-zero entries) contains that of W(:, j). Then we construct (W′,S′) such that
W′◦S′=W◦S and W′ is sparser than W: W′(:, i)=W(:, i)−W(:, j), S′(i, :)=S(i, :
) ∨ S(j, :), and the other columns of W′ (resp. rows of S′) are equal to that of W
(resp. S). Using this observation, the lemma below follows.

Lemma 4.2 Let W ∈ {0, 1}m×r1 have distinct columns. Let P ∈ {−1, 0, 1}r1×r1 and
Q ∈ {0, 1}r1×r1 be as follows:
(1) P(i, i) = Q(i, i) = 1 for all i, and
(2) P(j, i) = −1 and Q(j, i) = 1 for all i ̸= j such that the support of W(:, i) contains
that of W(:, j).
Then W=W′ ◦Q, where W′=max(0,WP) ∈ {0, 1}m×r1 is sparser than W (since P
has negative entries when there is an inclusion between the supports of some columns
of W) and more expressive2 in BMTF since W ◦S = W′ ◦ (Q ◦S) = W′ ◦S′ for any
S and for S′ = Q ◦ S.

2That is, any BMTF generated using W can also be generated using W′.

94

Note that if W has two identical columns, one of them can be set to zero, and
S can be updated accordingly without changing W ◦ S. When W has zero columns
(and similarly for rows of H), we set a single entry to 1, at the position where the
row of the residual R = X−W ◦ S ◦H has the most entries equal to one.

Example of Lemma 4.2. Let m = 4 and r1 = 3, and consider

W =


1 1 0
1 1 0
1 0 0
0 0 1

 ∈ {0, 1}4×3,

whose columns are distinct and satisfy supp(W(:, 1)) = {1, 2, 3} ⊃ supp(W(:, 2)) =
{1, 2}. Following Lemma 4.2, define P,Q ∈ R3×3 by P(i, i) = Q(i, i) = 1 for all i,
and since supp(W(:, 1)) contains supp(W(:, 2)), set P(2, 1) = −1 and Q(2, 1) = 1
(all other off-diagonal entries are 0). Thus

P =

 1 0 0
−1 1 0
0 0 1

 , Q =

1 0 0
1 1 0
0 0 1

 .

Then WP has first column W(:, 1)−W(:, 2), hence

W′ = max(0,WP) =


0 1 0
0 1 0
1 0 0
0 0 1

 ∈ {0, 1}4×3.

In particular, ∥W(:, 1)∥0 = 3 whereas ∥W′(:, 1)∥0 = 1, so ∥W′∥0 < ∥W∥0 and
W′ is strictly sparser than W. Moreover, we can check that W = W′ ◦ Q since
Q(:, 1) = (1, 1, 0)⊤ implies (W′ ◦Q)(:, 1) = W′(:, 1) ∨W′(:, 2) = W(:, 1), while the
other columns are unchanged.
To summarize, we propose the following refinement procedure:

1. set to zero duplicated columns of W,

2. make the W sparser and more expressive via Lemma 4.2,

3. reinitialize zero columns with a single non-zero entry as described above.

4.4.4 Initialization of the algorithm
We initialize the matrix W either by randomly sampling r1 columns of X or by
binarizing an NMF solution of X, as in [63]. W.l.o.g. we assume r1 ≥ r2 (otherwise,
transpose X), and the matrix S is initialized with the identity matrix Ir2 while the
remaining rows are filled with a single 1 in random positions. Finally, here is our
proposed algorithm:

The above steps ensure that the BCD scheme generates a sequence of solutions
with non-increasing objective function.

Chapter 4. Boolean Matrix Tri-Factorization 95

Algorithm 15 BCD algorithm for BMTF

Require: X ∈ {0, 1}m×n, ranks (r1, r2), sparsity parameters KW , KH .
Ensure: W ∈ {0, 1}m×r1 , S ∈ {0, 1}r1×r2 and H ∈ {0, 1}r2×n

1: Initialize W∈{0, 1}m×r1 and S∈{0, 1}r1×r2 as described above.
2: while W, S or H change do
3: Update H by column with BoolLS with sparsity KH , and perform the refine-

ment procedure.
4: Update S by solving the BoolLS (4.2).
5: Update W by row (4.1) with sparsity KW , and perform the refinement proce-

dure.
6: Update S by solving the BoolLS (4.2) (because W has changed).
7: i = i+ 1
8: end while
9: return (W,S,H)

4.5 Numerical Experiments
All experiments in this section are performed on Julia v.1.9.2 with Gurobi version 11
on a laptop with an intel i7 1255U processor @ 1.7 GHz and 16 GB RAM. The code is
available in https://gitlab.com/ckolomvakis/boolean-matrix-tri-factorization.

4.5.1 Experiments on synthetic data
We first construct an orthogonal BMTF as X=W◦S◦H∈{0, 1}120×80 where W ∈
{0, 1}120×7 has one non-zero element per row. Each column of W has 17=⌊120/7⌋
non-zero elements, and the last one has 18. The same procedure is used to generate
the rows of H. For S, each row has 2 non-zero elements: We list all the possible
binary vectors of dimension 5(= r2) with 2 entries equal to one, and pick 7(= r1)
of them randomly as the rows of S. Then, to make the problem more challenging,
we add to W one nonzero per row at a random position, and then one nonzero per
column of H. We denote (zW , zS , zH) the number of non-zeros per row of W, per
row of S and per column of H. For each experimental setting, we run our algorithm
with 25 random initializations (we use the NMF-based initialization for W) and keep
the best solution (unless it finds a solution with zero error in which case we stop it),
and we repeat this procedure 50 times (50 trials).

Table 4.1 reports the percentage of times the ground truth W, S and H were
found correctly among the 50 runs, and in parenthesis the percentage of elements
found wrong on average. The fifth column (err.) reports the percentage of runs when
the average relative error ∥X−W ◦ S ◦H∥F

∥X∥F
is equal to zero, and in brackets it reports

its value. The last column reports the average time in seconds needed to generate one
BMTF solution with one initialization.

For the case where W and H are orthogonal (that is, zW=zH=1, first row), the
ground-truth factors are always recovered (on an average using less than 7 initializa-

https://gitlab.com/ckolomvakis/boolean-matrix-tri-factorization

96

(zW , zS , zH) W S H err. time
(1,2,1) 100% 100% 100% 100% 1.13 s.

(2,2,1) 0%
(21%)

0%
(16%)

99.8%
(0.16%�)

45%
(9%) 1.43 s.

(2,2,2) 0%
(24%)

0%
(24%)

0%
(26%)

0.7%
(28%) 1.32 s.

Table 4.1: Percentage of time the ground-truth factors, or zero errors, are found
among the 50 Monte Carlo runs on synthetic data sets. In brackets, we report the
percentage of entries found wrong on average for the factors W, S and H, and report
the average relative error.

tions). This illustrates two facts: our identifiability results (Theorem 4.1) and the
fact that our algorithm performs well as it is able to recover the unique solution in
all 50 trials. For the case W is not orthogonal but H is (second row), the algorithm
can still find the ground-truth H in most cases, although it cannot recover W and
S, which are non-unique: in fact, in 45% of the trials, BCD finds a solution with a
zero relative error but the groundtruth W and S are not recovered, because W is not
orthogonal. The problem becomes even harder when we add the extra nonzeros on
H as well (third row). However, although we cannot recover the ground truth, the
recovered factors share many entries with it (about 75%).

4.5.2 Clustering a real dataset with BMTF
Let us consider an experiment on the “zoo" real dataset [39]. Each row represents an
animal, and each column represents a characteristic; see Tables 4.2-4.3 for examples.
We have removed some characteristics and some animals from the dataset as done
in [119] (e.g., the characteristic ‘breathes’ which is equal to one for almost all animals)
to obtain a matrix X ∈ {0, 1}99×14.

Here, we are considering (r1, r2) = (5, 3). Over 1500 trials, each of which took
on average 0.58 seconds, we report the factors with the lowest error ∥X −W ◦ S ◦
H∥F /∥X∥F = 33%, which is relatively high since the ranks chosen are small (r2 = 3)
and real data do not perfectly fit low-rank models. The parameters considered for
W and H were (KW ,KH) = (2, 2). Tables 4.2-4.3 show the clusters. We call ’mixed
cluster’ the clusters were multiple types of animals are included.
We will now present the matchings that we receive from the matrix S:

W clusters
H clusters Birds Mixed Mammals

Aquatic animals 0 1 0
Birds 1 0 0

Mixed cluster 0 0 0
Aquatic birds 1 1 0

Mammals 0 0 1

.

Chapter 4. Boolean Matrix Tri-Factorization 97

Aquatic animals: bass, carp, catfish, chub, crayfish,
dogfish, . . . , octopus, penguin, pike, . . . , stingray, tuna
Birds: chicken, crow, dove, duck, flamingo, gnat, . . . ,
parakeet, penguin, pheasant, . . . , vulture, wasp, wren

Mixed cluster: crab, crayfish, flea, frog,
fruitbat, gnat, gorilla, honeybee, . . . , wasp

Aquatic birds: gull, skimmer, skua
Mammals: aardvark, antelope, bear, boar,

buffalo, calf, . . . , vole, wallaby, wolf

Table 4.2: Clusters of animals.

Avian (rel. to birds): feathers, eggs, airborne, less than 4 legs
Mixed charactetistics: eggs, aquatic, predator, toothed,

fins, less than 4 legs, tail
Mammalian: hair, milk, toothed, 4 legs, tail

Table 4.3: Clusters of characteristics.

We observe that the clusters make sense. Furthermore, many animals are assigned to
multiple clusters per the property of BMTF, e.g., the “penguin" is assigned to aquatic
animals and birds, both being sensible assignments.

4.6 Conclusion
In this chapter, we introduced Boolean matrix tri-factorization (BMTF). We gave
motivations as to why this model is useful, discussed identifiability, and proposed a
BCD algorithm that includes a clever refinement procedure. Our numerical experi-
ments show that the BCD algorithm is able to find good solutions and can be used
meaningfully on a real-world data set. Further work includes a deeper understanding
of the conditions under which BMTF is identifiable, as done for example for BMF
in [35, 90], the use of BMTF for other applications, and the development of algorithms
scalable to large data.

98

Chapter 5

Conclusions

In this chapter, we summarize the contributions of this thesis and propose possible
future research directions.

5.1 Summary of the contributions
This thesis mostly focused on the design of algorithms for matrix factorization mod-
els with binary and Boolean constraints: We proposed new algorithms for semi-bMF,
BMF, and BMTF.

More specifically:

• In Chapter 2, we proposed new algorithms for semi-bMF, which imposes only
one factor to be binary. We extended the algorithms of [70, 71] to handle noisy
data, as well as algorithms that are scalable. More specifically, we explained how
the robust versions of ASCD and ABCD can be obtained. We then presented
a first-order algorithm for the SDPs involved, to make the algorithms more
scalable, and later made it even more scalable by using the Burer-Monteiro
approach [16, 29]. We explained how our new algorithms work and presented
the scalability gains.

• In Chapter 3, we shifted our focus to BMF. We introduced new algorithms with
different methodologies. We first presented alternating optimization algorithms
that solve integer programs as part of the computation of a BMF, and com-
bining schemes to improve the solutions. To address the problem of scalability
that comes with the use of integer programming methods, we then proposed
greedy and local search heuristics. We showed that our latter class of proposed
algorithms is competitive with the state of the art. We also showed the con-
siderable scalability gains. We examined various applications, including facial
image reconstruction and topic modeling.

99

100

• In Chapter 4, we proposed the new Boolean Matrix Tri-Factorization (BMTF)
model. We first discussed why it is interesting to consider it and what addi-
tional interpretation it can give us in comparison to BMF. We proved conditions
under which BMTF is identifiable, and then proposed an IP-based alternating
optimization algorithm. Our experiments confirm that, under the proposed con-
ditions, our algorithm can recover the ground truth. Furthermore, we showcase
that in a classifying application of animals and their characteristics, it offers
meaningful results.

5.2 Future Work
In Chapter 2, we already discussed some potential future work directions. Additional
research directions could be the following:

• There is limited work on metaheuristics like genetic algorithms, simulated an-
nealing or TABU search for BMF. It could be interesting to explore these alter-
natives further, especially since we have shown in Chapter 3 that simple greedy
heuristics already perform very well.

• Designing branch-and-bound algorithms specifically designed for the Boolean
least squares problem in an attempt to improve the performance of the IP-based
algorithms we proposed.

• Examining algorithms that compute globally optimal solutions of BMF, without
solving for one factor at a time.

• For BMTF, while we proposed conditions for the uniqueness of the decomposi-
tion, these are rather restrictive. Examining whether more relaxed conditions
can guarantee the uniqueness of BMTF would be particularly interesting.

• Develop greedy algorithms for BMTF, since they perform well for BMF, while
our current IP-based algorithms are limited for small and medium sized datasets.

Bibliography

1. Ang, A. M. S. & Gillis, N. Accelerating Nonnegative Matrix Factorization Al-
gorithms Using Extrapolation. Neural Computation 31, 417–439 (2019).

2. ApS, M. The MOSEK optimization toolbox for MATLAB manual. Version 10.0.
(2022). http://docs.mosek.com/9.0/toolbox/index.html.

3. Araujo, M., Ribeiro, P. & Faloutsos, C. FastStep: Scalable Boolean Matrix De-
composition in Pacific-Asia Conf. on Knowledge Discovery and Data Mining
(2016).

4. Asteris, M., Papailiopoulos, D. & Dimakis, A. G. Orthogonal NMF through
Subspace Exploration in Advances in Neural Information Processing Systems
(eds Cortes, C., Lawrence, N., Lee, D., Sugiyama, M. & Garnett, R.) 28 (Curran
Associates, Inc., 2015). https://proceedings.neurips.cc/paper_files/
paper/2015/file/eae27d77ca20db309e056e3d2dcd7d69-Paper.pdf.

5. Avellaneda, F. & Villemaire, R. Delegation-Relegation for Boolean Matrix Fac-
torization. Proceedings of the AAAI Conference on Artificial Intelligence 38,
20632–20639. https://ojs.aaai.org/index.php/AAAI/article/view/
30049 (Mar. 2024).

6. Avellaneda, F. & Villemaire, R. Undercover Boolean Matrix Factorization with
MaxSAT. Proceedings of the AAAI Conference on Artificial Intelligence 36,
3672–3681. https://ojs.aaai.org/index.php/AAAI/article/view/20280
(June 2022).

7. Ban, F., Bhattiprolu, V., Bringmann, K., Kolev, P., Lee, E. & Woodruff, D. P.
A PTAS for lp-low rank approximation in (Society for Industrial and Applied
Mathematics, San Diego, California, 2019), 747–766.

8. Belohlavek, R. & Trnecka, M. A new algorithm for Boolean matrix factoriza-
tion which admits overcovering. Discrete Applied Mathematics 249. Concept
Lattices and Applications: Recent Advances and New Opportunities, 36–52.
issn: 0166-218X. https://www.sciencedirect.com/science/article/pii/
S0166218X18303755 (2018).

9. Belohlavek, R. & Trnecka, M. The 8M Algorithm from Today’s Perspective.
ACM Trans. Knowl. Discov. Data 15. issn: 1556-4681. https://doi.org/10.
1145/3428078 (Jan. 2021).

101

http://docs.mosek.com/9.0/toolbox/index.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/eae27d77ca20db309e056e3d2dcd7d69-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/eae27d77ca20db309e056e3d2dcd7d69-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/30049
https://ojs.aaai.org/index.php/AAAI/article/view/30049
https://ojs.aaai.org/index.php/AAAI/article/view/20280
https://www.sciencedirect.com/science/article/pii/S0166218X18303755
https://www.sciencedirect.com/science/article/pii/S0166218X18303755
https://doi.org/10.1145/3428078
https://doi.org/10.1145/3428078

102

10. Belohlavek, R. & Vychodil, V. Discovery of optimal factors in binary data via
a novel method of matrix decomposition. Journal of Computer and System
Sciences 76. Special Issue on Intelligent Data Analysis, 3–20. issn: 0022-0000.
https://www.sciencedirect.com/science/article/pii/S0022000009000415
(2010).

11. Bhattacharya, A., Goyal, D., Jaiswal, R. & Kumar, A. Streaming PTAS for
Binary ℓ0-Low Rank Approximation. arXiv e-prints, arXiv:1909.11744. arXiv:
1909.11744 [cs.DS] (Sept. 2019).

12. Bishop, C. M. & Nasrabadi, N. M. Pattern recognition and machine learning 4
(Springer, 2006).

13. Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel,
J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., et al. An updated set of
basic linear algebra subprograms (BLAS). ACM Transactions on Mathematical
Software 28, 135–151 (2002).

14. Bonnans, J. F. & Shapiro, A. Perturbation analysis of optimization problems
(Springer Science & Business Media, 2013).

15. Boumal, N., Voroninski, V. & Bandeira, A. The non-convex Burer-Monteiro
approach works on smooth semidefinite programs in Advances in Neural Infor-
mation Processing Systems (eds Lee, D., Sugiyama, M., Luxburg, U., Guyon, I.
& Garnett, R.) 29 (Curran Associates, Inc., 2016).

16. Boumal, N., Voroninski, V. & Bandeira, A. S. The non-convex Burer–Monteiro
approach works on smooth semidefinite programs in Proceedings of the 30th
International Conference on Neural Information Processing Systems (Curran
Associates Inc., Barcelona, Spain, 2016), 2765–2773. isbn: 9781510838819.

17. Boyle, J. P. & Dykstra, R. L. A Method for Finding Projections onto the Inter-
section of Convex Sets in Hilbert Spaces in Advances in Order Restricted Sta-
tistical Inference (eds Dykstra, R., Robertson, T. & Wright, F. T.) (Springer
New York, New York, NY, 1986), 28–47. isbn: 978-1-4613-9940-7.

18. Bringmann, K., Kolev, P. & Woodruff, D. Approximation Algorithms for \l_0-
Low Rank Approximation in Advances in Neural Information Processing Sys-
tems (eds Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S. & Garnett, R.) 30 (Curran Associates, Inc., 2017).

19. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,
A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B.,
Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I. & Amodei, D.
Language models are few-shot learners in Proceedings of the 34th International
Conference on Neural Information Processing Systems (Curran Associates Inc.,
Vancouver, BC, Canada, 2020). isbn: 9781713829546.

20. Burer, S. & Monteiro, R. D. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming
95, 329–357 (2003).

https://www.sciencedirect.com/science/article/pii/S0022000009000415
https://arxiv.org/abs/1909.11744

Bibliography 103

21. Cabral Farias, R. & Miron, S. A generalized approach for Boolean matrix fac-
torization. Signal Processing 206, 108887. issn: 0165-1684. https://www.
sciencedirect.com/science/article/pii/S0165168422004261 (2023).

22. Cai, D., Mei, Q., Han, J. & Zhai, C. Modeling hidden topics on document mani-
fold in Proceedings of the 17th ACM Conference on Information and Knowledge
Management (Association for Computing Machinery, Napa Valley, California,
USA, 2008), 911–920. isbn: 9781595939913. https://doi.org/10.1145/
1458082.1458202.

23. Campbell, M. J. BMDP Statistical Software. Bioinformatics 4, 427–430. issn:
1367-4803. eprint: https://academic.oup.com/bioinformatics/article-
pdf/4/3/427/548262/4-3-427.pdf (Aug. 1988).

24. Candes, E. J. & Plan, Y. Matrix completion with noise. Proceedings of the
IEEE 98, 925–936 (2010).

25. Candès, E. J., Li, X., Ma, Y. & Wright, J. Robust principal component analysis?
Journal of the ACM (JACM) 58, 1–37 (2011).

26. Carpineto, C. & Romano, G. Concept Data Analysis: Theory and Applications
isbn: 0470850558 (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2004).

27. Chen, G., Wang, F. & Zhang, C. Collaborative filtering using orthogonal non-
negative matrix tri-factorization. Information Processing & Management 45,
368–379. issn: 0306-4573. https : / / www . sciencedirect . com / science /
article/pii/S0306457308001167 (2009).

28. Cichocki, A., Zdunek, R. & Amari, S.-i. Hierarchical ALS Algorithms for Non-
negative Matrix and 3D Tensor Factorization in Independent Component Anal-
ysis and Signal Separation (eds Davies, M. E., James, C. J., Abdallah, S. A. &
Plumbley, M. D.) (Springer Berlin Heidelberg, Berlin, Heidelberg, 2007), 169–
176. isbn: 978-3-540-74494-8.

29. Cifuentes, D., Boumal, N., Granda, M., C., L. & S., L. On the Burer–Monteiro
method for general semidefinite programs. Optimization Letters 15, 2299–2309
(2021).

30. Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to
Algorithms, Third Edition 3rd. isbn: 0262033844 (The MIT Press, 2009).

31. Cplex, I. I. V12. 1: User’s Manual for CPLEX. International Business Machines
Corporation 46, 157 (2009).

32. Dache, A., Vandaele, A. & Gillis, N. Orthogonal Symmetric Nonnegative Matrix
Tri-Factorization in 34th IEEE International Workshop on Machine Learning
for Signal Processing (MLSP) (2024).

33. Dalleiger, S. & Vreeken, J. Efficiently Factorizing Boolean Matrices using Prox-
imal Gradient Descent. Advances in Neural Information Processing Systems
(2022).

https://www.sciencedirect.com/science/article/pii/S0165168422004261
https://www.sciencedirect.com/science/article/pii/S0165168422004261
https://doi.org/10.1145/1458082.1458202
https://doi.org/10.1145/1458082.1458202
https://academic.oup.com/bioinformatics/article-pdf/4/3/427/548262/4-3-427.pdf
https://academic.oup.com/bioinformatics/article-pdf/4/3/427/548262/4-3-427.pdf
https://www.sciencedirect.com/science/article/pii/S0306457308001167
https://www.sciencedirect.com/science/article/pii/S0306457308001167

104

34. Dalleiger, S., Vreeken, J. & Kamp, M. Federated Binary Matrix Factorization
Using Proximal Optimization. Proceedings of the AAAI Conference on Artificial
Intelligence 39, 16144–16152. https://ojs.aaai.org/index.php/AAAI/
article/view/33773 (Apr. 2025).

35. Desantis, D., Skau, E., Truong, D. P. & Alexandrov, B. Factorization of Bi-
nary Matrices: Rank Relations, Uniqueness and Model Selection of Boolean
Decomposition. ACM Trans. Knowl. Discov. Data 16. issn: 1556-4681. https:
//doi.org/10.1145/3522594 (2022).

36. Ding, C., Li, T., Peng, W. & Park, H. Orthogonal nonnegative matrix t-factorizations
for clustering in 12th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining (2006), 126–135.

37. Dorffer, C., Puigt, M., Delmaire, G. & Roussel, G. Fast nonnegative matrix fac-
torization and completion using Nesterov iterations in International Conference
on Latent Variable Analysis and Signal Separation (2017), 26–35.

38. Drakopoulos, G. & Mylonas, P. A Genetic Algorithm For Boolean Semiring
Matrix Factorization With Applications To Graph Mining in 2022 IEEE Inter-
national Conference on Big Data (Big Data) (2022), 3864–3870.

39. Dua, D. & Graff, C. UCI Machine Learning Repository 2017. http://archive.
ics.uci.edu/ml.

40. Erdos, D. & Miettinen, P. Walk ’n’ Merge: A Scalable Algorithm for Boolean
Tensor Factorization in 2013 IEEE 13th International Conference on Data
Mining (2013), 1037–1042.

41. Farias, R. C. & Miron, S. Projected Hierarchical ALS for Generalized Boolean
Matrix Factorization in ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (2023), 1–5.

42. Fomin, F. V., Golovach, P. A., Lokshtanov, D., Panolan, F. & Saurabh, S.
Approximation Schemes for Low-rank Binary Matrix Approximation Problems.
16. issn: 1549-6325. https://doi.org/10.1145/3365653 (Nov. 2019).

43. Fomin, F. V., Golovach, P. A. & Panolan, F. Parameterized low-rank binary
matrix approximation. Data Min. Knowl. Discov. 34, 478–532. issn: 1384-5810.
https://doi.org/10.1007/s10618-019-00669-5 (Mar. 2020).

44. Ganter, B. & Wille, R. Formal concept analysis : mathematical foundations
isbn: 3540627715 9783540627715 (Springer, Berlin; New York, 1999).

45. Geerts, F., Goethals, B. & Mielikäinen, T. Tiling Databases in Discovery Sci-
ence (eds Suzuki, E. & Arikawa, S.) (Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2004), 278–289. isbn: 978-3-540-30214-8.

46. Gillis, N. Nonnegative Matrix Factorization eprint: https://epubs.siam.org/
doi/pdf/10.1137/1.9781611976410. https://epubs.siam.org/doi/abs/
10.1137/1.9781611976410 (Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2020).

47. Gillis, N. Sparse and unique nonnegative matrix factorization through data pre-
processing. The Journal of Machine Learning Research 13, 3349–3386 (2012).

https://ojs.aaai.org/index.php/AAAI/article/view/33773
https://ojs.aaai.org/index.php/AAAI/article/view/33773
https://doi.org/10.1145/3522594
https://doi.org/10.1145/3522594
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/3365653
https://doi.org/10.1007/s10618-019-00669-5
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976410
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976410
https://epubs.siam.org/doi/abs/10.1137/1.9781611976410
https://epubs.siam.org/doi/abs/10.1137/1.9781611976410

Bibliography 105

48. Gillis, N. & Kumar, A. Exact and Heuristic Algorithms for Semi-Nonnegative
Matrix Factorization. SIAM Journal on Matrix Analysis and Applications 36,
1404–1424 (2015).

49. Grant, M. & Boyd, S. CVX: Matlab Software for Disciplined Convex Program-
ming, version 2.1 http:/cvxr.com/cvx. Mar. 2014.

50. Grasedyck, L., Klever, M. & Krämer, S. Quasi-orthogonalization for alternat-
ing non-negative tensor factorization. Electronic Transactions on Numerical
Analysis 62, 22–57 (2024).

51. Guennebaud, G., Jacob, B., et al. Eigen v3 http://eigen.tuxfamily.org. 2010.
52. Günlük, O., Hauser, R. A. & Kovács, R. Á. Binary Matrix Factorisation and

Completion via Integer Programming. arXiv preprint arXiv:2106.13434 (2021).
53. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual https://

www.gurobi.com. 2023.
54. Haddad, A., Shamsi, F., Zhu, L. & Najafizadeh, L. Identifying dynamics of brain

function via Boolean matrix factorization in Asilomar Conference on Signals,
Systems, and Computers (2018).

55. Hess, S. & Morik, K. English. in Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases (eds Ceci, M., Dzeroski, S., Vens,
C., Todorovski, L. & Hollmen, J.) 547–563 (Springer, Germany, 2017). isbn:
978-3-319-71248-2.

56. Hess, S., Morik, K. & Piatkowski, N. The PRIMPING routine–Tiling through
proximal alternating linearized minimization. Data Min. Knowl. Discov. 31,
1090–1131. issn: 1384-5810. https://doi.org/10.1007/s10618-017-0508-z
(July 2017).

57. Hien, L. T. K. & Gillis, N. Algorithms for Nonnegative Matrix Factorization
with the Kullback–Leibler Divergence. J. Sci. Comput. 87. issn: 0885-7474.
https://doi.org/10.1007/s10915-021-01504-0 (June 2021).

58. Higham, N. J. Computing the nearest correlation matrix—a problem from
finance. IMA Journal of Numerical Analysis 22, 329–343. issn: 0272-4979.
eprint: https://academic.oup.com/imajna/article- pdf/22/3/329/
2089524/220329.pdf. https://doi.org/10.1093/imanum/22.3.329 (July
2002).

59. Hoyer, P. O. Non-negative Matrix Factorization with Sparseness Constraints.
J. Mach. Learn. Res. 5, 1457–1469. issn: 1532-4435 (Dec. 2004).

60. Huang, K., Sidiropoulos, N. D. & Liavas, A. P. A Flexible and Efficient Algo-
rithmic Framework for Constrained Matrix and Tensor Factorization. Trans.
Sig. Proc. 64, 5052–5065. issn: 1053-587X. https://doi.org/10.1109/TSP.
2016.2576427 (Oct. 2016).

61. Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R.,
Gray, S., Radford, A., Wu, J. & Amodei, D. Scaling Laws for Neural Language
Models. arXiv preprint arXiv:2001.08361. https://arxiv.org/abs/2001.
08361 (2020).

http:/cvxr.com/cvx
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/s10618-017-0508-z
https://doi.org/10.1007/s10915-021-01504-0
https://academic.oup.com/imajna/article-pdf/22/3/329/2089524/220329.pdf
https://academic.oup.com/imajna/article-pdf/22/3/329/2089524/220329.pdf
https://doi.org/10.1093/imanum/22.3.329
https://doi.org/10.1109/TSP.2016.2576427
https://doi.org/10.1109/TSP.2016.2576427
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361

106

62. Kolomvakis, C. & Gillis, N. Robust Binary Component Decompositions in ICASSP
2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2023), 1–5.

63. Kolomvakis, C., Vandaele, A. & Gillis, N. Algorithms for Boolean Matrix Fac-
torization using Integer Programming in 33rd International Workshop on Ma-
chine Learning for Signal Processing (MLSP) (2023).

64. Kolomvakis, C., Vandaele, A. & Gillis, N. Boolean Matrix Tri-Factorization in
ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2025), 1–5.

65. Kovacs, R. A., Gunluk, O. & Hauser, R. A. Binary Matrix Factorisation via
Column Generation. in AAAI (2021), 3823–3831. isbn: 978-1-57735-866-4.

66. Kovács, R., Günlük, O. & Hauser, R. A. Low-Rank Boolean Matrix Approxi-
mation by Integer Programming. CoRR abs/1803.04825. arXiv: 1803.04825.
http://arxiv.org/abs/1803.04825 (2018).

67. Koyutürk, M. & Grama, A. PROXIMUS: a framework for analyzing very high
dimensional discrete-attributed datasets in Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Asso-
ciation for Computing Machinery, Washington, D.C., 2003), 147–156. isbn:
1581137370. https://doi.org/10.1145/956750.956770.

68. Krebs, V. A network of books about recent us politics sold by the online book-
seller amazon. com. Unpublished http://www. orgnet. com (2008).

69. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification with
Deep Convolutional Neural Networks in Advances in Neural Information Pro-
cessing Systems 25 (eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger,
K. Q.) (Curran Associates, Inc., 2012), 1097–1105. http://papers.nips.
cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks.pdf.

70. Kueng, R. & Tropp, J. A. Binary Component Decomposition Part I: The
Positive-Semidefinite Case. SIAM Journal on Mathematics of Data Science 3,
544–572. eprint: https://doi.org/10.1137/19M1278612. https://doi.org/
10.1137/19M1278612 (2021).

71. Kueng, R. & Tropp, J. A. Binary component decomposition Part II: The asym-
metric case. Arxiv preprint. arXiv: 1907.13602. http://arxiv.org/abs/
1907.13602 (2019).

72. Laurent, M. & Poljak, S. On the facial structure of the set of correlation matri-
ces. SIAM Journal on Matrix Analysis and Applications 17, 530–547 (1996).

73. Lázaro-Gredilla, M., Liu, Y., Phoenix, D. S. & George, D. Hierarchical compo-
sitional feature learning. arXiv preprint arXiv:1611.02252 (2016).

74. Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix
factorization. Nature 401, 788–791 (1999).

75. Lehmann, S., Schwartz, M. & Hansen, L. K. Biclique communities. Phys. Rev.
E 78, 016108 (1 July 2008).

https://arxiv.org/abs/1803.04825
http://arxiv.org/abs/1803.04825
https://doi.org/10.1145/956750.956770
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1137/19M1278612
https://doi.org/10.1137/19M1278612
https://doi.org/10.1137/19M1278612
https://arxiv.org/abs/1907.13602
http://arxiv.org/abs/1907.13602
http://arxiv.org/abs/1907.13602

Bibliography 107

76. Li, X., Wang, J. & Kwong, S. Boolean matrix factorization based on collabo-
rative neurodynamic optimization with Boltzmann machines. Neural Networks
153, 142–151. issn: 0893-6080. https://www.sciencedirect.com/science/
article/pii/S0893608022002118 (2022).

77. Liang, L. & Lu, S. Noisy and Incomplete Boolean Matrix Factorizationvia Ex-
pectation Maximization 2019. arXiv: 1905.12766 [stat.ML]. https://arxiv.
org/abs/1905.12766.

78. Liang, L., Zhu, K. & Lu, S. BEM: mining coregulation patterns in transcrip-
tomics via Boolean matrix factorization. Bioinformatics 36 (13), 4030–4037
(2020).

79. Lu, H., Vaidya, J. & Atluri, V. Optimal Boolean Matrix Decomposition: Appli-
cation to Role Engineering in International Conference on Data Engineering
(2008).

80. Lucchese, C., Orlando, S. & Perego, R. A Unifying Framework for Mining
Approximate Top- k Binary Patterns. IEEE Transactions on Knowledge and
Data Engineering 26, 2900–2913 (2014).

81. Lucchese, C., Orlando, S. & Perego, R. in Proceedings of the 2010 SIAM In-
ternational Conference on Data Mining (SDM) 165–176 (). eprint: https :
/ / epubs . siam . org / doi / pdf / 10 . 1137 / 1 . 9781611972801 . 15. https :
//epubs.siam.org/doi/abs/10.1137/1.9781611972801.15.

82. Mahoney, M. W. & Drineas, P. CUR matrix decompositions for improved data
analysis. Proceedings of the National Academy of Sciences 106, 697–702. eprint:
https://www.pnas.org/doi/pdf/10.1073/pnas.0803205106 (2009).

83. Markovsky, I. Low rank approximation: algorithms, implementation, applica-
tions (Springer, 2012).

84. McCulloch, W. & Pitts, W. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biology 5, 115–133. issn: 0007-4985. http:
//dx.doi.org/10.1007/bf02478259 (Dec. 1943).

85. Miettinen, P. Boolean Tensor Factorizations in 2011 IEEE 11th International
Conference on Data Mining (2011), 447–456.

86. Miettinen, P. The Boolean column and column-row matrix decompositions.
Data Mining and Knowledge Discovery 17, 39–56. issn: 1384-5810. https:
//doi.org/10.1007/s10618-008-0107-0 (Aug. 2008).

87. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G. & Mannila, H. The Dis-
crete Basis Problem in Knowledge Discovery in Databases: PKDD 2006 (eds
Fürnkranz, J., Scheffer, T. & Spiliopoulou, M.) (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006), 335–346.

88. Miettinen, P., Mielikäinen, T., Gionis, A., Das, G. & Mannila, H. The discrete
basis problem. IEEE Trans. Knowl. Data Eng. 20, 1348–1362 (2008).

89. Miettinen, P. & Neumann, S. Recent Developments in Boolean Matrix Factor-
ization in International Joint Conference on Artificial Intelligence (2021).

https://www.sciencedirect.com/science/article/pii/S0893608022002118
https://www.sciencedirect.com/science/article/pii/S0893608022002118
https://arxiv.org/abs/1905.12766
https://arxiv.org/abs/1905.12766
https://arxiv.org/abs/1905.12766
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972801.15
https://epubs.siam.org/doi/pdf/10.1137/1.9781611972801.15
https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.15
https://epubs.siam.org/doi/abs/10.1137/1.9781611972801.15
https://www.pnas.org/doi/pdf/10.1073/pnas.0803205106
http://dx.doi.org/10.1007/bf02478259
http://dx.doi.org/10.1007/bf02478259
https://doi.org/10.1007/s10618-008-0107-0
https://doi.org/10.1007/s10618-008-0107-0

108

90. Miron, S., Diop, M., Larue, A., Robin, E. & Brie, D. Boolean decomposition
of binary matrices using a post-nonlinear mixture approach. Signal Processing
178, 107809 (2021).

91. Nesterov, Y. & Nemirovskii, A. Interior-Point Polynomial Algorithms in Con-
vex Programming eprint: https://epubs.siam.org/doi/pdf/10.1137/
1 . 9781611970791. https : / / epubs . siam . org / doi / abs / 10 . 1137 / 1 .
9781611970791 (Society for Industrial and Applied Mathematics, 1994).

92. Ortiz-Bouza, M. & Aviyente, S. Community detection in multiplex networks
based on orthogonal nonnegative matrix tri-factorization. IEEE Access (2024).

93. Park, N., Oh, S. & Kang, U. Fast and scalable method for distributed Boolean
tensor factorization. The VLDB Journal 28, 549–574. issn: 1066-8888. https:
//doi.org/10.1007/s00778-019-00538-z (Aug. 2019).

94. Ravanbakhsh, S., Poczos, B. & Greiner, R. Boolean Matrix Factorization and
Noisy Completion via Message Passing in Proceedings of The 33rd International
Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.)
48 (PMLR, New York, New York, USA, 20–22 Jun 2016), 945–954. https:
//proceedings.mlr.press/v48/ravanbakhsha16.html.

95. Recht, B. A simpler approach to matrix completion. Journal of Machine Learn-
ing Research 12 (2011).

96. Rosenblatt, F. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review 65, 386–408. issn: 0033-
295X. http://dx.doi.org/10.1037/h0042519 (1958).

97. Rukat, T., Holmes, C. & Yau, C. Probabilistic Boolean Tensor Decomposition in
Proceedings of the 35th International Conference on Machine Learning (eds Dy,
J. & Krause, A.) 80 (PMLR, Oct. 2018), 4413–4422. https://proceedings.
mlr.press/v80/rukat18a.html.

98. Rukat, T., Holmes, C. C., Titsias, M. K. & Yau, C. Bayesian Boolean Matrix
Factorisation in International Conference on Machine Learning (2017).

99. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. in Neurocomputing: Foun-
dations of Research 696–699 (MIT Press, Cambridge, MA, USA, 1988). isbn:
0262010976.

100. Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach 3rd ed.
(Prentice Hall, 2010).

101. Sanderson, C. & Curtin, R. R. Armadillo: a template-based C++ library for
linear algebra. J. Open Source Softw. 1, 26 (2016).

102. Snasel, V., Platos, J. & Kromer, P. Developing Genetic Algorithms for Boolean
Matrix Factorization in Databases, Texts, Specifications, Objects (2008). https:
//api.semanticscholar.org/CorpusID:10617385.

103. Snášel, V., Platoš, J. & Krömer, P. On Genetic Algorithms for Boolean Matrix
Factorization in 2008 Eighth International Conference on Intelligent Systems
Design and Applications 2 (2008), 170–175.

https://epubs.siam.org/doi/pdf/10.1137/1.9781611970791
https://epubs.siam.org/doi/pdf/10.1137/1.9781611970791
https://epubs.siam.org/doi/abs/10.1137/1.9781611970791
https://epubs.siam.org/doi/abs/10.1137/1.9781611970791
https://doi.org/10.1007/s00778-019-00538-z
https://doi.org/10.1007/s00778-019-00538-z
https://proceedings.mlr.press/v48/ravanbakhsha16.html
https://proceedings.mlr.press/v48/ravanbakhsha16.html
http://dx.doi.org/10.1037/h0042519
https://proceedings.mlr.press/v80/rukat18a.html
https://proceedings.mlr.press/v80/rukat18a.html
https://api.semanticscholar.org/CorpusID:10617385
https://api.semanticscholar.org/CorpusID:10617385

Bibliography 109

104. Sørensen, M., De Lathauwer, L. & Sidiropoulos, N. D. Bilinear factorizations
subject to monomial equality constraints via tensor decompositions. Linear
Algebra and its Applications 621, 296–333 (2021).

105. Sørensen, M., Sidiropoulos, N. D. & Swami, A. Overlapping Community De-
tection via Semi-Binary Matrix Factorization: Identifiability and Algorithms.
IEEE Transactions on Signal Processing 70, 4321–4336 (2022).

106. Stellato, B., Naik, V. V., Bemporad, A., Goulart, P. & Boyd, S. Embedded
Mixed-Integer Quadratic Optimization Using the OSQP Solver in European
Control Conference (ECC) (July 2018).

107. Stewart, G. & Sun, J.-g. Matrix Perturbation Theory (Academic Press Inc,
1990).

108. Thanh, O. V. & Gillis, N. Minimum-Volume Nonnegative Matrix Completion in
2024 32nd European Signal Processing Conference (EUSIPCO) (2024), 2452–
2456.

109. Trigeorgis, G., Bousmalis, K., Zafeiriou, S. & Schuller, B. W. A deep semi-NMF
model for learning hidden representations in Proceedings of the 31st Interna-
tional Conference on International Conference on Machine Learning - Volume
32 (JMLR.org, Beijing, China, 2014), II–1692–II–1700.

110. Trnecka, M. & Vyjidacek, R. Revisiting the GreCon algorithm for Boolean
matrix factorization. Knowledge-Based Systems 249, 108895. issn: 0950-7051.
https://www.sciencedirect.com/science/article/pii/S0950705122004282
(2022).

111. Truong, D. P., Skau, E., Desantis, D. & Alexandrov, B. Boolean matrix factor-
ization via nonnegative auxiliary optimization. IEEE Access 9, 117169–117177
(2021).

112. Turing, A. M. Computing Machinery and Intelligence. English. Mind. New Se-
ries 59, 433–460. issn: 00264423. http://www.jstor.org/stable/2251299
(1950).

113. Udell, M., Horn, C., Zadeh, R., Boyd, S., et al. Generalized low rank models.
Foundations and Trends® in Machine Learning 9, 1–118 (2016).

114. Vaidya, J., Atluri, V. & Guo, Q. The role mining problem: finding a mini-
mal descriptive set of roles in Proceedings of the 12th ACM Symposium on
Access Control Models and Technologies (Association for Computing Machin-
ery, Sophia Antipolis, France, 2007), 175–184. isbn: 9781595937452. https:
//doi.org/10.1145/1266840.1266870.

115. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. & Polosukhin, I. Attention is All you Need in Advances in Neural
Information Processing Systems 30 (2017). https://arxiv.org/abs/1706.
03762.

116. Vavasis, S. A. On the Complexity of Nonnegative Matrix Factorization. SIAM
Journal on Optimization 20, 1364–1377. eprint: https://doi.org/10.1137/
070709967. https://doi.org/10.1137/070709967 (2010).

https://www.sciencedirect.com/science/article/pii/S0950705122004282
http://www.jstor.org/stable/2251299
https://doi.org/10.1145/1266840.1266870
https://doi.org/10.1145/1266840.1266870
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1137/070709967
https://doi.org/10.1137/070709967
https://doi.org/10.1137/070709967

110

117. Wan, C., Chang, W., Zhao, T., Cao, S. & Zhang, C. Geometric All-way Boolean
Tensor Decomposition in Advances in Neural Information Processing Systems
(eds Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. & Lin, H.) 33 (Cur-
ran Associates, Inc., 2020), 2848–2857. https : / / proceedings . neurips .
cc/paper_files/paper/2020/file/1def1713ebf17722cbe300cfc1c88558-
Paper.pdf.

118. Wan, C., Chang, W., Zhao, T., Li, M., Cao, S. & Zhang, C. Fast and Efficient
Boolean Matrix Factorization by Geometric Segmentation in AAAI Confer-
ence on Artificial Intelligence (2019). https://api.semanticscholar.org/
CorpusID:211076357.

119. Wan, C., Dang, P., Zhao, T., Zang, Y., Zhang, C. & Cao, S. Bias aware prob-
abilistic Boolean matrix factorization in Thirty-Eighth Conference on Uncer-
tainty in Artificial Intelligence (2022), 2035–2044.

120. Wang, S., Chang, T.-H., Cui, Y. & Pang, J.-S. Clustering by Orthogonal NMF
Model and Non-Convex Penalty Optimization. IEEE Transactions on Signal
Processing 69, 5273–5288 (2021).

121. Wicker, J., Hua, Y. C., Rebello, R. & Pfahringer, B. XOR-Based Boolean Ma-
trix Decomposition in 2019 IEEE International Conference on Data Mining
(ICDM) (2019), 638–647.

122. Xu, Y., Yin, W., Wen, Z. & Zhang, Y. An alternating direction algorithm for
matrix completion with nonnegative factors. Frontiers of Mathematics in China
7, 365–384 (2012).

123. Yoo, J. & Choi, S. Orthogonal nonnegative matrix tri-factorization for co-
clustering: Multiplicative updates on Stiefel manifolds. Information Processing
& Management 46, 559–570. issn: 0306-4573. https://www.sciencedirect.
com/science/article/pii/S0306457310000038 (2010).

124. Yoo, J. & Choi, S. Probabilistic matrix tri-factorization in 2009 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (2009), 1553–
1556.

125. Zhang, Z., Li, T., Ding, C. & Zhang, X. Binary matrix factorization with ap-
plications in IEEE Int. Conf. on Data Mining (2007), 391–400.

126. Zou, H., Hastie, T. & Tibshirani, R. Sparse principal component analysis. Jour-
nal of Computational and Graphical Statistics 15, 265–286 (2006).

https://proceedings.neurips.cc/paper_files/paper/2020/file/1def1713ebf17722cbe300cfc1c88558-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1def1713ebf17722cbe300cfc1c88558-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1def1713ebf17722cbe300cfc1c88558-Paper.pdf
https://api.semanticscholar.org/CorpusID:211076357
https://api.semanticscholar.org/CorpusID:211076357
https://www.sciencedirect.com/science/article/pii/S0306457310000038
https://www.sciencedirect.com/science/article/pii/S0306457310000038

	Abstract
	Contents
	Notation
	List of Figures
	List of Tables
	Introduction
	Contributions and thesis outline

	Robust Binary Component Decompositions
	Introduction
	Models and Algorithms from BCDI
	Robust versions of the algorithms
	Robust SSCD
	Robust ASCD and robust ABCD

	Gradient methods for the SDP problems
	First-order method for SSCD
	First order method for ASCD

	Burer-Monteiro (B-M) approach
	B-M on the SSCD problem
	B-M on the ASCD problem

	Numerical Experiments
	Original experiments from KolomvakisICASSP2023
	Comparison of the B-M approach versus the PG approach

	Conclusion

	Novel Algorithms for Boolean Matrix Factorization
	Boolean matrix factorization (BMF)
	Illustrative example
	Previous works

	Alternating optimization (AO) for BMF
	IP formulation for BMF subproblems
	AO for BMF
	Initialization of AO

	Combining multiple BMF solutions
	MS-Comb-AO
	Tree-BMF

	Greedy BMF heuristics
	Greedy Boolean LS
	Greedy combining methods
	Custom data structure for Boolean vectors and matrices in C++

	Numerical Experiments
	Comparison of our bitmatrix data structure
	Experiments from the datasets in BoolMFIP
	Application to topic modeling
	Application on facial images

	Conclusion

	Boolean Matrix Tri-Factorization
	Introduction
	Boolean matrix tri-factorization
	Identifiability via Orthogonality
	Block-coordinate descent for BMTF
	Introduction
	Imposing sparsity
	Generating sparser and more expressive solutions
	Initialization of the algorithm

	Numerical Experiments
	Experiments on synthetic data
	Clustering a real dataset with BMTF

	Conclusion

	Conclusions
	Summary of the contributions
	Future Work

